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Preface

This volume contains the collection of papers presented at the International Conference on
Applications of Artificial Intelligence (A2I'25), held at the University M’hamed Bougara of
Boumerdes, Algeria, on April 16-17, 2025. The conference aimed to provide an international
forum for researchers, doctoral students, and practitioners to exchange innovative ideas, present
original findings, and discuss recent advances in the field of Artificial Intelligence (AI) and its
wide-ranging applications.

Artificial Intelligence continues to transform the way societies address challenges in areas
such as healthcare, energy, agriculture, urban development, finance, and information security.
By bringing together interdisciplinary perspectives, A2I'25 offered an opportunity to highlight
not only theoretical advancements but also practical solutions that can directly impact societal
well-being and sustainable development.

For this edition, the organizing committee received 51 paper submissions. Each submission
underwent a rigorous peer-review process, with every article evaluated by at least two qualified
reviewers from the program committee. Following this process, 28 papers were accepted, leading
to an acceptance rate of approximately 54%. The selected contributions cover a wide spectrum
of Al-related topics, including machine learning, computer vision, natural language processing,
intelligent systems, optimization, and bio-inspired algorithms. The accepted papers were pre-
sented in multiple oral sessions over the two-day program, reflecting the diversity and richness
of ongoing research in the field.

In addition to the contributed papers, the conference featured keynote addresses from dis-
tinguished speakers, who provided valuable insights into current trends and future directions
of Artificial Intelligence research and its societal applications. The scientific discussions and
interactive exchanges during the event highlighted both opportunities and challenges, laying the
groundwork for future collaborations and advancements in Al

We are confident that the articles included in this volume will serve as a useful reference for
researchers, engineers, and students working in the field. They not only represent the state-of-
the-art in Artificial Intelligence but also open new perspectives on how Al can be harnessed to
address complex real-world problems.

Finally, we extend our sincere gratitude to all authors for their valuable contributions, to the
reviewers for their careful and constructive evaluations, and to the keynote speakers for their
inspiring talks. We also wish to thank the members of the organizing and program committees
for their dedication in ensuring the scientific quality and success of A21'25.
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Part 1

Artificial Intelligence for Medical
Imaging and Data Security



Transfer Learning with Enhanced Models for Skin
Cancer Detection: A Comprehensive Evaluation of
Transfer Learning and Data Augmentation on the

ISIC 2020 Dataset
SAADNA Yassmina', MEZZOUDJ Saliha?, and KHELIFA Meriem?

! Lastic Laboratory, Department of Mathematics and Computer Science, University of Batna 2
Mostefa Ben Boulaid, Batna, Algeria, y.saadna@univ-batna2.dz
2Faculty of Sciences, Department of Computer Science, University of Algiers 1, Algiers, Algeria,
s.mezzoudjOuniv-alger.dz
3 Department of Computer Science and Information Technology, University of Kasdi Merbah
Ouargla, Ouargla, Algeria

Abstract

Skin cancer, encompassing melanoma and non-melanoma variants, remains a prevalent global ma-
lignancy, necessitating timely detection to enhance patient outcomes. This study employs transfer
learning with pre-trained convolutional neural networks (CNNs)—VGG16, DenseNet121, ResNet50,
and InceptionV3—to classify skin lesions as benign or malignant using the ISIC 2020 dataset of 17,755
dermoscopic images. We evaluated baseline models, data augmentation effects, and enhanced archi-
tectures with additional trainable layers. Enhanced DenseNet121 achieved superior performance,
with 96.45% accuracy, 96.32% precision, 96.69% recall, and a 96.50% F1-score. Data augmentation,
however, reduced accuracy, underscoring its context-specific limitations. These findings highlight
the efficacy of enhanced transfer learning for automated skin cancer diagnostics, offering a scalable,
precise solution.

Keywords: Skin Cancer, Melanoma, Transfer Learning, Deep Learning, Convolutional Neural
Networks, ISIC 2020

1 Introduction

Skin cancer ranks among the most prevalent malignancies globally, with an estimated 1.5 million new
cases annually, posing a significant public health challenge [22, 18]. Melanoma, though less common, is
the deadliest form due to its metastatic potential, while non-melanoma variants, such as basal cell and
squamous cell carcinomas, contribute substantially to morbidity, particularly in fair-skinned populations
exposed to ultraviolet radiation [12]. Early detection is paramount, as it can increase five-year survival
rates for melanoma from 25% in advanced stages to over 95% when identified early [18]. However, con-
ventional diagnostic methods—visual inspection, dermoscopy, and histopathology—are time-consuming,
subjective, and reliant on expert dermatologists, who are often scarce, especially in resource-limited re-
gions [7]. This gap underscores the urgent need for automated, accurate, and accessible diagnostic tools
to bridge disparities in skin cancer care.

Deep learning, particularly convolutional neural networks (CNNs), has emerged as a transformative
approach in medical imaging, offering the potential to automate skin cancer detection with high precision
[11]. Yet, training CNNs from scratch requires vast labeled datasets, a resource rarely available in medical
contexts due to data scarcity and annotation challenges [17]. Transfer learning addresses this limitation
by adapting pre-trained CNNs, originally trained on large-scale natural image datasets like ImageNet,
to specialized medical tasks [15]. Despite its success, challenges persist, including domain shifts between
natural and dermoscopic images and the inconsistent performance of data augmentation, which can
degrade rather than enhance diagnostic accuracy [8]. These issues highlight the need for innovative
strategies to optimize transfer learning for skin cancer detection.

This study tackles these challenges by investigating transfer learning with enhanced models for clas-
sifying skin lesions as benign or malignant using the ISIC 2020 dataset, comprising 17,755 dermoscopic
images. We systematically compare four pre-trained CNNs—VGG16, DenseNet121, ResNet50, and In-
ceptionV3—across three configurations: baseline transfer learning, data augmentation, and enhanced
models with additional trainable layers. Our primary contribution is the development of an enhanced




DenseNet121 model that achieves a state-of-the-art accuracy of 96.45%, surpassing baseline perfor-
mance (94%) and demonstrating robustness against data augmentation’s limitations. Key strengths
include the model’s ability to leverage dense connectivity for superior feature extraction, its adaptabil-
ity to dermoscopic-specific features through architectural enhancements, and its potential for clinical
deployment in resource-constrained settings. By providing a comprehensive evaluation, including train-
ing/validation curves and confusion matrices, and a novel enhancement strategy, this work advances the
field of Al-driven skin cancer diagnostics, offering a scalable, high-precision solution that rivals expert-
level accuracy.

2 Related Works

The integration of artificial intelligence into healthcare has reshaped diagnostics, with deep learning
demonstrating exceptional proficiency in image-based disease detection. In dermatology, convolutional
neural networks (CNNs) have shown promise in identifying subtle lesion patterns, driven by seminal
works and ongoing advancements in transfer learning. Esteva et al. (2017) set a benchmark by achieving
dermatologist-level accuracy (91%) using a fine-tuned InceptionV3 model on a dataset of 129,450 images,
establishing the feasibility of Al-driven skin cancer detection. This work underscored transfer learning’s
potential to adapt pre-trained models, trained on large-scale datasets like ImageNet, to medical imaging
tasks with limited data.

Subsequent studies have expanded this paradigm. Brinker et al. (2019) pitted a CNN against
136 dermatologists, achieving 89% accuracy on dermoscopic images, highlighting AI’s competitive edge.
Haenssle et al. (2018) reported a CNN’s superior performance (95% sensitivity) over 58 dermatolo-
gists, reinforcing clinical relevance. These efforts often leverage datasets like HAM10000, introduced by
Tschandl et al. (2018) with 10,015 multi-source dermoscopic images, and ISIC 2020, a standardized
benchmark for lesion classification. However, challenges persist, including domain shifts between natural
and dermoscopic images and variable data augmentation efficacy.

Recent advancements have focused on optimizing transfer learning for skin cancer detection, par-
ticularly with ISIC 2020. Nawaz et al. (2022) combined deep learning with fuzzy k-means clustering,
achieving accuracies of 95.4%, 93.1%, and 95.6% across ISBI-2016, ISIC-2017, and PH2 datasets, respec-
tively. Rashid et al. (2022) utilized MobileNetV2 with data augmentation, reporting 98.2% accuracy
on ISIC 2020, emphasizing lightweight models. Lee et al. (2023) compared CNNs (e.g., ResNet, In-
ception) on ISIC 2020, achieving up to 95% accuracy, providing a direct benchmark. Within Artificial
Intelligence in Medicine, Khan et al. (2023) enhanced CNNs with optimization techniques, achieving
98.2% accuracy on ISIC 2020, while Hosny et al. (2022) developed a hybrid CNN model, reporting 96%
accuracy with multi-source integration. Additional AIM contributions include Mishra et al. (2022), who
employed transfer learning with DenseNet for melanoma detection, achieving 94.8% accuracy on ISIC
2019, and Zhang et al. (2021), who introduced a multi-task CNN framework for skin lesion segmentation
and classification, yielding 92.5% accuracy. Cicalese et al. (2023) further advanced diagnostics with a
generative adversarial network (GAN) to synthesize dermoscopic images, improving classification by 3%
over baseline CNNs on ISIC data.

Data augmentation’s role remains debated. Johnson et al. (2022) explored domain-specific aug-
mentation, achieving 93% accuracy by preserving lesion features, contrasting with generic methods’
limitations, as reviewed by Shorten and Khoshgoftaar (2019). Zhang et al. (2019) introduced attention
mechanisms, improving classification to 94% accuracy. Architectural enhancements have also progressed,
with Huang et al.’s (2017) DenseNet introducing dense connectivity, He et al.’s (2016) ResNet addressing
gradient issues, Szegedy et al.’s (2016) InceptionV3 optimizing multi-scale extraction, and Simonyan and
Zisserman’s (2014) VGG16 emphasizing depth. In AIM, Li et al. (2020) applied transfer learning to
retinal imaging, adapting CNNs for disease classification with 95.2% accuracy, paralleling dermoscopic
efforts. Dosovitskiy et al. (2021) proposed Vision Transformers, suggesting future directions. Our work
extends these efforts by enhancing DenseNet121 with trainable layers, addressing domain shifts and
outperforming baseline models, contributing to Al-driven skin cancer diagnostics.




3 Methods

3.1 Dataset

Robust datasets underpin deep learning efficacy in medical imaging [2]. We utilized a subset of the
ISIC 2020 dataset, ”ISIC2020.60_40,” comprising 17,755 dermoscopic images sourced from Kaggle. The
dataset was split into training (10,653 images: 5,400 benign, 5,253 malignant) and testing (7,103 images:
3,600 benign, 3,502 malignant) sets, with images resized to 256 x 256 x 3 pixels for computational
efficiency. Other datasets considered include HAM10000 (10,015 images across seven classes) [21] and
PH2 (200 RGB dermoscopic images) [13]. ISIC 2020 was selected for its scale and binary focus, aligning
with clinical diagnostic needs.

3.2 Pre-trained Models

Four CNNs were selected for their architectural diversity and proven efficacy in transfer learning [15]:

e VGG16: Features 16 layers with 3 x 3 filters, pre-trained on ImageNet, emphasizing depth for
detailed feature extraction [19].

e DenseNet121: Comprises 121 layers with dense connectivity, pre-trained on ImageNet, enhancing
feature reuse and efficiency [6].

e ResNet50: Employs 50 layers with residual connections, pre-trained on ImageNet, mitigating
gradient issues in deep networks [5].

e InceptionV3: Utilizes 42 layers with multi-scale convolutions, pre-trained on ImageNet, for robust
feature capture [20].

ImageNet, with 1.2 million natural images across 1,000 classes, provided initial weights [17].

3.3 Experimental Design

Experiments were conducted using Python 3.8 with Keras on Google Colab. Three configurations were
assessed:

e Baseline: Simple transfer learning, freezing pre-trained layers and adding a softmax output layer.

e Data Augmentation: Applied via Keras’ ImageDataGenerator using pixel normalization (1./255),
90° rotation, 0.2 width/height shift, 0.2 shear, 0.2 zoom, and horizontal flip.

e Enhanced Models: Augmented pre-trained bases with trainable convolutional (ReLU activation)
and dense (dropout) layers, enabling task-specific adaptation beyond final-layer retraining.

Hyperparameters (Table 1) were optimized for convergence and performance evaluation.

Table 1: Experimental hyperparameters.

Parameter Value

Loss Function Multi-class cross-entropy

Activation Functions | ReLU (hidden), Softmax (output)

Optimizer Adam

Batch Size 128

Epochs 40

Metrics Accuracy, Precision, Recall, F1-Score, Confusion Matrix

3.4 Evaluation Metrics

Performance was quantified using accuracy, precision, recall, F1-score, and confusion matrices to assess
classification across benign and malignant classes. Training and validation curves were analyzed to
evaluate convergence and generalization.




4 Results

4.1 Baseline Models

Baseline models established initial performance: DenseNet121 achieved 94% accuracy (15% loss), followed
by InceptionV3 (88%, 26%), VGG16 (85%, 35%), and ResNet50 (76%, 52%). Confusion matrices (Figure
1) showed DenseNet121 misclassified 135 benign and 240 malignant lesions, outperforming others (e.g.,
ResNet50: 446 benign, 1,233 malignant). Training and validation curves (Figure 2) indicated stable
convergence for DenseNet121, with minimal overfitting compared to ResNet50’s higher validation loss.

Detailed metrics are in Table 2.

actu

Table 2: Baseline model performance metrics.

Model F1-Score | Precision | Recall
VGG16 0.8574 0.8314 0.8850
ResNet50 0.7898 0.8761 0.9300
DenseNet121 0.9487 0.9352 0.9625
InceptionV3 0.8875 0.9176 0.8594
DenseNet121 InceptionV3

confusion matrix

pred_benign

predicted

VGG 16

confusion matrix

predicted

4.2 Data Augmentation

Data augmentation reduced accuracy: DenseNet121 dropped to 82% (40% loss), InceptionV3 to 77%
(46%), VGG16 to 79% (48%), and ResNet50 to 69% (60%). Confusion matrices (Figure 3) revealed in-
creased errors (e.g., DenseNet121: 125 benign, 1,163 malignant), reflecting disrupted feature recognition.
Training curves (Figure 4) showed higher volatility and loss divergence, indicating poor generalization.

Metrics are in Table 3.
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Figure 1: Confusion matrices for baseline models.

Model F1-Score | Precision | Recall
VGG16 0.7737 0.8582 0.7044
ResNet50 0.8122 0.8524 0.4764
DenseNet121 0.8436 0.7492 0.9653
InceptionV3 0.7857 0.7585 0.8150
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Table 3: Performance metrics with data augmentation.
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Figure 2: Training and validation curves for baseline models.

4.3 Enhanced Models

Enhanced models improved outcomes: DenseNet121 reached 96.45% accuracy (10% loss), VGG16 93.49%
(18%), ResNet50 94.07% (20%), and InceptionV3 93.68% (22%). Confusion matrices (Figure 5) showed
DenseNet121 misclassified only 119 benign and 133 malignant lesions, minimizing errors. Training and
validation curves (Figure 6) exhibited smooth convergence and low loss, confirming robust generalization.

Metrics are in Table 4.

Table 4: Enhanced model performance metrics.

Model Accuracy | F1-Score | Precision | Recall
VGG16 93.49% 93.65% 92.52% | 94.81%
ResNet50 94.07% 94.08% 95.19% | 93.00%

DenseNet121 | 96.45% 96.50% 96.32% | 96.69%
InceptionV3 93.68% 93.55% 96.93% | 90.39%
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Figure 3: Confusion matrices with data augmentation.

5 Discussion

Enhanced DenseNet121’s standout performance (96.45% accuracy) underscores the value of architectural
augmentation in transfer learning, as evidenced by Table 5. Baseline accuracy (94%) dropped to 82%
with augmentation, rebounding to 96.45% with enhancements—a pattern mirrored across models (e.g.,
VGG16: 85% to 79% to 93.49%). Training curves (Figures 2, 4, 6) and confusion matrices (Figures 1, 3,
5) reveal why: baseline models leveraged pre-trained weights well, augmentation disrupted key features,
and enhancements restored and refined them.

The consistent drop in accuracy across all models with data augmentation—from 94% to 82% for
DenseNet121—Ilikely stems from the disruption of critical dermoscopic features like lesion asymmetry
and border irregularity, essential for malignancy detection in the ISIC 2020 dataset. Geometric trans-
formations such as 90° rotation and horizontal flipping, applied to the 10,653 training images, may have
altered these diagnostic markers, misaligning them with the dataset’s centered lesion patterns and caus-
ing a surge in false negatives (e.g., 1,163/3,502 for DenseNet121). Given the dataset’s size and diversity,
these augmentations introduced noise rather than beneficial variance, a contrast to their efficacy in nat-
ural image tasks. Pre-trained models, initialized on ImageNet, struggled to adapt to these distortions, as
dermoscopic images demand specific feature preservation unlike the broader textures of natural scenes.
Similar performance declines with augmentation have been observed by Pooch et al. [14] found reduced
accuracy in chest radiograph classification due to domain shifts, while Chlap et al. [1] noted degraded
radiotherapy model outcomes from excessive geometric changes, also Johnson et al [9] underscoring the
need for domain-specific strategies in medical imaging.

Table 5: Comparative accuracy across configurations.

Model Baseline Accuracy | Augmented Accuracy | Enhanced Accuracy
VGG16 85% 79% 93.49%
ResNet50 76% 69% 94.07%
DenseNet121 94% 82% 96.45%
InceptionV3 88% 7% 93.68%

DenseNet121’s edge lies in its dense connectivity [6], where each layer accesses all prior outputs, fos-
tering feature reuse (e.g., edges from early layers inform deeper lesion pattern detection). This contrasts
with VGG16’s linear depth, which redundantly relearns features, or ResNet50’s residuals, which mitigate
gradients but lack DenseNet’s efficiency (fewer parameters: ~7M vs. ResNet50’s ~25M). Added convolu-
tional and dense layers with ReLU and dropout further tuned this advantage, adapting ImageNet-derived
filters to dermoscopic specifics—likely prioritizing irregular borders or pigment variations over generic
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Figure 4: Training and validation curves with data augmentation.

textures. The drop from 252 total errors (baseline) to 252 (enhanced) reflects this, with false negatives
halving (240 to 133), vital for avoiding missed diagnoses.

Augmentation’s failure (82% accuracy) likely stems from altering medically significant features—e.g.,
flipping a lesion might obscure asymmetry, a malignancy marker [9]. This contrasts with natural image
tasks where such distortions aid robustness, highlighting a domain mismatch. Enhanced models counter
this by learning task-specific filters, evidenced by tighter training/validation alignment (Figure 6) and
a 2.45% accuracy gain over baseline—statistically notable given the 7,103-image test set (approximate
95% confidence interval: £0.8%).

Compared to prior work, 96.45% approaches Rashid et al.’s 98.2% with MobileNetV2 [16] and Khan
et al.’s 98.2% with optimized CNNs [10], surpassing Esteva et al.’s 91% [3]. Unlike MobileNetV2’s
lightweight focus, DenseNet121 balances complexity and precision, suiting clinical deployment where
sensitivity (96.69%) outweighs speed. Misclassification analysis suggests most errors are false positives
(119 benign), tolerable in screening as they trigger further checks, unlike false negatives (133 malignant),
which risk delayed treatment—still, a 3.80% miss rate rivals expert dermatologists (e.g., Haenssle et al.’s
95% sensitivity [4]). Limitations include ISIC 2020’s binary focus—multi-class datasets like HAM10000
could test generalization—and augmentation’s context-specific failure, warranting tailored strategies [9].
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Figure 5: Confusion matrices for enhanced models.

6 Conclusion

This study demonstrates the efficacy of transfer learning with enhanced convolutional neural networks for
skin cancer detection, achieving 96.45% accuracy, 96.32% precision, 96.69% recall, and a 96.50% F1-score
with DenseNet121 on the ISIC 2020 dataset of 17,755 dermoscopic images. Incorporating trainable layers
improved performance over baseline transfer learning (94% to 96.45%), harnessing dense connectivity
to optimize feature reuse, gradient propagation, and adaptation of pre-trained weights to dermoscopic
characteristics, including irregular borders and pigment variations. This enhancement yielded a false
negative rate of 3.80% (133/3,502), critical for early malignancy identification, and a false positive rate of
3.31% (119/3,600), supporting its utility in clinical screening workflows requiring subsequent validation.

In contrast, data augmentation reduced accuracy (94% to 82% for DenseNet121), exposing its lim-
itations in medical imaging contexts. Geometric transformations—rotation, flipping, shifting, shearing,
and zooming—altered diagnostic features such as asymmetry and border irregularity, increasing false
negatives to 33.21% (1,163/3,502) and disrupting training stability. This divergence from its benefits in
natural image domains underscores a domain-specific mismatch, with the 10,653 training images proving
sufficient for baseline generalization without augmentation.

These findings affirm a scalable, high-sensitivity approach for automated skin cancer detection, par-
ticularly valuable in resource-constrained environments. Future investigations should prioritize domain-
adapted augmentation strategies, such as color-based adjustments, assess multi-class classification on
diverse datasets, and evaluate advanced architectures or multi-modal inputs integrating dermoscopy
with patient data to refine diagnostic accuracy further. This work advances the integration of Al into
clinical dermatology by optimizing model architecture while highlighting the need for tailored data pre-
processing.
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Abstract

Ensuring the security of sensitive medical data, including patient records and medical images,
is paramount in the healthcare sector due to the risks of unauthorized access and data breaches.
As healthcare information is increasingly transmitted through unsecured channels, maintaining its
confidentiality, integrity, and authenticity is essential. This review examines Al-driven security
techniques such as encryption, anomaly detection, and privacy-preserving algorithms, which play
a crucial role in protecting medical data. By enhancing regulatory compliance and fostering trust
in digital healthcare systems, these methods contribute significantly to data security. Additionally,
this paper explores recent advancements in Al-based medical image protection and highlights key
challenges and future research directions in the field of medical data security.

Keywords: Al, Sybersecurity, medical image, cryptography, watermarking.

1 Introduction

Given the critical sensitivity of healthcare data, it remains a primary target for cyberattacks, particularly
as large volumes of information are accessed and transmitted over potentially unsecured networks. En-
suring data security requires robust protection measures at every stage, including storage, transmission,
and retrieval. To safeguard patient information, researchers commonly employ techniques such as cryp-
tography, steganography, and watermarking, which strengthen security and help prevent unauthorized
access. [14, 25] [7].

This review focuses on two primary types of health data—medical images and electronic health records
(EHRs)—as these are commonly secured through encryption and watermarking. Medical images, derived
from diagnostic tools like ultrasound and MRI, capture critical anatomical details and are essential for
diagnosis and research, making their secure storage and transfer vital. EHRs, containing personal and
medical information, are also crucial to protect, as they hold sensitive patient data. Securing medical
images and EHRs is paramount to maintaining patient privacy, ensuring data integrity, and supporting
trust in healthcare systems [10].

Security methods and techniques in the medical field help protect sensitive data, but with the
rapid growth of Artificial intelligence (AI) applications in medical image segmentation and classifica-
tion—particularly for enhancing diagnosis and cancer detection—AI has also become crucial for advanc-
ing medical data security [29]. Al is revolutionizing cybersecurity by enabling proactive threat detection
and response through real-time data analysis and anomaly detection, enhancing systems like intrusion
detection, malware analysis, and phishing detection while allowing security teams to focus on complex
challenges [5].

The objective of this review is to examine recent Al-driven approaches to securing medical images,
with a focus on key applications, methodologies, and emerging trends in the field. By analyzing current
advancements, we aim to provide insights into how AI enhances medical image security and to identify
areas for future research that could further strengthen privacy and data protection in healthcare.

2 Medical Image Security Threat Landscape

The digital nature of the medical data and images exposes them to various cybersecurity threats. This
section explores common security threats targeting medical images and their implications, highlighting
the need for robust protective measures.

12



2.1 Types of Security Threats

In July 2021, three organizations—Retinal Consultants Medical Group, ACE Surgical Supply, and Three
Rivers Regional Commission—reported breaches in which unauthorized individuals accessed protected
health information. These incidents affected a total of 25,725 patients, exposing personal data such as
names, addresses, usernames, passwords, financial account numbers, and medical information, including
treatment history and diagnoses. The compromised data posed significant risks, including identity theft,
phishing attacks, and the potential alteration of medical records, which could lead to incorrect diagnoses
and treatments [3].

2.2 Vulnerabilities in healthcare

This section explores the specific security challenges associated with the core components of e-health
systems

2.2.1 Cloud computing platforms

e Data Breaches: Data breaches in cloud services often occur due to poor security practices like
weak passwords and the absence of multi-factor authentication, leading to the exposure of sensitive
patient information [11].

e Unauthorized Access: Unauthorized access to cloud services often arises from misconfigurations
and weak authentication protocols, which cybercriminals exploit through methods such as phishing
[29], keylogging [30], person-in-the-middle (PITM) attacks, brute force attempts[33], and credential
stuffing. These techniques enable attackers to steal or bypass login credentials, compromising
sensitive data.

2.2.2 Internet of medical things (IOMT)

The Internet of Medical Things (IoMT) enhances patient care through real-time data collection but poses
significant security risks, including device vulnerabilities, data interception due to weak encryption, and
susceptibility to remote attacks. These risks can compromise patient privacy, disrupt medical device
functionality, and even endanger lives [35].

2.2.3 Electronic health records (EHRS)

Electronic Health Records (EHRs) are advanced digital systems that centralize and organize a wide array
of patient information, including medical history, diagnoses, medications, immunization records, allergies,
radiology images, and lab results. They provide real-time, patient-centered records that are instantly
accessible to authorized personnel, anytime and anywhere. EHRs enhance collaboration by allowing
multiple healthcare providers to share and access a patient’s information, enabling integrated care and
better decision-making. They also improve workflows by reducing paperwork, increasing accuracy in
record-keeping, and offering evidence-based tools to support clinical decisions. By centralizing and
streamlining data, EHRs foster a more patient-centered approach, ensuring that care is tailored to
individual needs. These features collectively make EHRs a cornerstone in modern healthcare systems,
significantly contributing to better patient outcomes and operational efficiency [34, 15].

3 Al-Driven Techniques in Medical Image Security

3.1 Machine Learning-Based Encryption:

3.1.1 Securing Medical Image Analysis with Encryption Algorithms in Deep Learning

Recent advancements in Al and encryption techniques are transforming healthcare by enabling secure
and accurate medical data processing. Naik et al. [28] used DenseNet-121 and AES-128 encryption for
identifying lung diseases from chest X-rays. Kumar et al. [21] implemented a cloud-based system for
tumor detection in MRI images using CNN with 97.87% accuracy and AES-256 encryption. Mohanty
et al. [26] achieved 98.51% accuracy in brain tumor detection with CNN-LSTM secured by a modified
SHA-256 algorithm. Other method employed an LSTM model with homomorphic encryption for pre-
dicting in-hospital mortality using the MIMIC-III dataset. while [12] developed PINPOINT, a temporal
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CNN with homomorphic encryption for time-series predictions, including COVID-19 case forecasting.
In [27] reviewed homomorphic encryption applications in cancer detection, cardiovascular analysis, and
secure healthcare queries. Boulila et al. [8] classified COVID-19 X-rays with MobileNetV2 and partially
homomorphic encryption, achieving 93.3% accuracy. These innovations underscore the potential of com-
bining AI with encryption for secure and efficient healthcare solutions.

3.1.2 Integrating Image Encryption and Compression in Deep Learning for Medical Image
Processing

The security and efficient transmission of medical images is essential due to their large size and sensitive
nature. Several recent techniques address both encryption and compression to enhance protection. Selvi
et al. [31] developed the ASFSCSLEC-DNL method for secure encryption and compression of chest
radiograph images, producing promising results. Ahmad et al. [1] proposed a block-based perceptual
encryption algorithm combined with JPEG compression for grayscale and color medical images, tested in
TB screening on chest radiographs. Kumar et al. [20] introduced MediSecFed, a secure federated learn-
ing framework for chest X-ray datasets, outperforming FedAvg by 15% in hostile environments. Hajjaji
et al. [13] proposed a novel crypto-compression algorithm using artificial neural networks and chaotic
systems, which successfully preserved the security and quality of the medical image during compression.

3.1.3 Key Generation in Encryption Algorithms for Medical Image Analysis

Key generation plays a crucial role in encryption algorithms for medical image analysis, ensuring the
confidentiality, integrity, and authenticity of sensitive data. Ding et al. [18] proposed a deep learning-
based key generation network (DeepKeyGen), which showed superior security to encrypt medical images,
evaluated on data sets such as chest X-rays and the BraTS18 data set. Krishna et al. [19] introduced
a dynamic medical image encryption technique using a neural network for key generation, encrypting
the key itself for enhanced security. While their method demonstrated strong encryption, the encryption
time needs optimization, as tested on X-ray images.

3.2 Watermarking and Data Integrity Verification:

Current research on deep learning-based watermarking focuses mainly on image watermarking, with
limited work on text and 3D images, offering improved efficiency and robustness by learning complex
patterns resilient to attacks, easily re-trained for different applications, and making signature retrieval
difficult due to high non-linearity [6, 7].

Many methods in the literature presented CNN-based techniques for digital image watermarking
that enhance both robustness and imperceptibility. These methods [32, 2], [39, 17] [22] utilize various
CNN architectures, such as encoder-decoder networks and full convolutional neural networks (FCNNs),
to efficiently embed and extract watermarks. They also introduce innovative strategies like adversarial
training and attack simulation layers to improve resistance against distortions and attacks, ultimately
achieving better trade-offs between robustness and imperceptibility. These CNN-based approaches out-
perform traditional methods, offering greater adaptability to different image resolutions and improving
the overall security of the watermarking process.

The second class of deep learning-based image watermarking utilizes generative adversarial networks
(GANSs), including variants like Wasserstein GANs (WGANs) and CycleGANs, known for their effec-
tiveness in providing invisibility and robustness. HiDDeN [40] was the first scheme to use an adversarial
discriminator to improve watermarking, featuring an encoder, decoder, and adversary network. ROMark
[36] improved HiDDeN by minimizing the loss of decoding in various attacks, while another variant in-
corporated rotation and noise layers to defend against geometric rotations. Zhang et al. [38] introduced
a GAN-based technique using inverse gradient attention (IGA) to improve capacity and robustness. Liu
et al. [24] proposed a two-stage separable deep learning framework (TSDL), which trains with true non-
differentiable noise attacks like JPEG compression, achieving improved robustness compared to previous
methods.
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3.3 Privacy-preserving solutions in deep learning-based techniques

Recent advances in secure medical data processing highlight the integration of security methods and deep
learning to improve accuracy and privacy. Zhang et al. [37] optimized CryptoNets with polynomial ReLU
approximations for better classification accuracy in networks with nonlinear layers, while Liu et al. [23]
enhanced inference accuracy using MiniONN with secret sharing. Alzubi et al. [4] proposed a blockchain-
based BAISMDT model for secure medical data transmission and disease detection. Hesamifard et al.
[16] and Carpov et al. [9] emphasized reducing computational costs and improving security in encrypted
systems through GPU batch bootstrapping and homomorphic encryption. Federated learning (FL) shows
promise in real-world medical data exchange but faces challenges with noisy data, underscoring the need
for further research into secure, efficient multiparty computation and privacy-preserving deep learning.

4 Evaluation and Benchmarking of AI Techniques

Comparative Analysis:
AT techniques in medical image security demonstrate varied performance across encryption strength,
detection accuracy, and computational efficiency:

e Encryption Strength: Techniques like homomorphic encryption (e.g., MiniONN, CryptoNets) and
GAN-based frameworks (e.g., TSDL and IGA) excel in securing medical data during processing
and transmission. Approaches integrating modified encryption algorithms, such as AES-128/256 or
SHA-256, provide robust data protection, while blockchain-based models like BAISMDT enhance
data privacy and integrity during exchange.

e Detection Accuracy: CNN-based methods (e.g., DenseNet-121, CNN-LSTM) achieve high diag-
nostic accuracy, with some models reporting over 98% in medical image classification and tumor
detection. GAN-based watermarking techniques also improve robustness and accuracy in image
integrity checks.

e Computational Efficiency: While encryption techniques like homomorphic encryption and neural
network-based key generation offer strong security, they often face higher computational costs.
Innovations like GPU acceleration, batch bootstrapping, and compression strategies reduce com-
putational overhead, enabling practical deployment in real-world scenarios.

Overall, integrating Al into medical image security balances high accuracy and robust encryption, though
computational efficiency remains an area for further optimization.

Dataset and Model Limitations: Medical image datasets face challenges of limited diversity,
impacting the ability of Al models to generalize across various demographics, imaging technologies, and
clinical settings. This lack of diversity hinders model robustness, particularly in ensuring the security
of sensitive patient information during processing and transmission. While advancements like adver-
sarial training, federated learning, and encryption-integrated models (e.g., homomorphic encryption,
blockchain) improve data security and robustness, the reliance on biased or narrow datasets continues
to limit the scalability and reliability of these AI solutions in real-world medical applications.

5 Challenges and Open Issues

Deep learning for medical image security using cryptography or watermarking techniques faces various
challenges such as

e Limited Generalization Deep learning models often struggle to adapt to new or diverse medical
image data, leading to decreased performance and security. Future research should focus on creating
models that generalize well across various imaging modalities, diseases, and patient groups.

e Vulnerability to Adversarial Attacks Adversarial attacks can manipulate input data, com-
promising the integrity and security of encrypted medical images. Future work should prioritize
developing robust training techniques and protective mechanisms to mitigate such vulnerabilities.
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e High Computational Costs One of the primary challenges in applying deep learning to medical
image security is the high computational cost. Training deep learning models requires expensive
hardware and extensive time. Future research could focus on optimizing algorithms and utiliz-
ing hardware accelerators like GPUs or TPUs to reduce these costs, enabling real-time, scalable
solutions in healthcare applications.

e Data Availability and Quality The scarcity of large, high-quality datasets due to privacy con-
cerns poses a significant challenge. Future developments should focus on privacy-preserving tech-
niques that enable model training on decentralized or encrypted datasets while maintaining data
security.

6 Conclusion

This paper explored various Al-driven techniques that play a crucial role in enhancing medical image
security. Advanced methods such as convolutional neural networks (CNNs), generative adversarial net-
works (GANs), federated learning (FL), and homomorphic encryption (HE) have demonstrated remark-
able effectiveness in strengthening encryption, improving threat detection, and optimizing computational
efficiency. These approaches not only protect sensitive medical data but also ensure its integrity and
accessibility within modern healthcare systems.

AT has become indispensable in addressing the escalating cybersecurity challenges in healthcare. By
enhancing data privacy and mitigating adversarial threats, Al-driven solutions bridge the gap between
security demands and the rapid digital transformation of healthcare infrastructures. Their adaptability
and scalability make them essential for managing the growing volumes of medical data securely.

Looking ahead, the integration of Al presents vast opportunities for advancing medical data security.
Future research should focus on developing more efficient, generalizable, and secure models that overcome
dataset limitations and computational constraints. As Al continues to evolve, it will play a pivotal role in
strengthening healthcare cybersecurity, safeguarding patient privacy, and enabling the seamless exchange
of medical information in an increasingly connected world.
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Abstract

A cervical spine fracture is a serious medical emergency that can lead to permanent paralysis
or even death. In addition, rapid and accurate detection of such fractures is essential for optimal
patient care. However, manually interpreting computed tomography (CT) images to detect possible
fractures in the cervical spine, as traditionally done, is time-consuming and requires the experience
of experienced radiologists. Fortunately, the integration of artificial intelligence and cloud computing
technologies in healthcare has the potential to revolutionize cervical spine fracture detection by pro-
viding fast, accurate, and automated solutions. In this context, we present a couple of contributions
in this paper. In the first contribution, we develop a new multifaceted computational pipeline based
on the combination of Faster R-CNN and Next-ViT models to detect fractures within the cervical
spine. The new computational pipeline has been trained and evaluated on the large RSNA public
dataset containing cervical spine CT scans. Hence, the new system has achieved encouraging results.
Furthermore, the new proposed data pipeline’s ability to detect subtle and complex fractures has
motivated us to integrate it in a cloud-based architecture that we present as a second contribution
in the setting of this paper. The proposed cloud-based architecture has the potential to be used as a
distant clinical decision-support tool to help radiologists identify fractures quickly and reliably, and
to be continuously improved through a feedback mechanism.

Keywords: Fracture detection, Cervical spine, Faster R-CNN, Next-ViT model; Cloud-based
architecture.

1 Introduction

Cervical spine fractures, often caused by accidents or falls, pose a challenging medical dilemma. These
kinds of injuries, which occur in a delicate part of the human skeletal structure, require swift and precise
identification to prevent serious neurological damage. Moreover, according to Savage et al. [5], more than
1.5 million people in the United States alone suffer spine fractures every year, a significant proportion of
which affect the delicate architecture of the cervical spine. For the elderly and those with pre-existing
conditions like osteoporosis, such fractures can be fatal. The situation is further complicated by the fact
that cervical spine fractures often require immediate attention, yet rapid and accurate diagnosis remains
elusive.

Fortunately, in the current age of rapid technological advancement, Artificial Intelligence (AI) and
cloud computing are making profound inroads into various domains. In fact, as reported by Voter et
al. [9], the combination of AI’s cutting-edge technologies and the prowess characteristics of cloud-based
systems offer innovative solutions featured with computational capabilities and abilities to decipher intri-
cate medical data patterns. Especially when it comes to challenging medical situations like cervical spine
fractures which are marked by complex diagnostics and the potential for severe neurological consequences
if mishandled.

Our main objective throughout this paper is to improve patient outcomes and to assist healthcare
professionals by presenting an accurate, rapid, automatic, secured, and continuously improving advanced
system for cervical spine fracture detection. The system relies on a combination of deep learning algo-
rithms like Faster R-CNN and Next-ViT, that have gained significant attention in the computer vision
community due to their recent remarkable state-of-the-art performances, as well as cloud computing and
human expertise.

The rest of this paper is organized as follows: Section 2 exhibits a state of the art of the main
works established in the literature on the cervical spine fracture detection problem. Section 3 presents in
details our first contribution in this paper, which is a new multifaceted computational pipeline based on a
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combination of Faster R-CNN and Next-ViT. Section 4 describes and discusses our second contribution,
that is a proposed cloud-based architecture deployed in Google Cloud Platform that offers an end-to-
end cervical spine fracture detection service to medical professionals as well as to patients. Section 5 is
dedicated to testing and evaluating the whole presented system by comparing it to an existing system
in the literature by considering the RSNA 2022 Cervical Spine Fracture Detection dataset. The paper
ends with a conclusion, given in Section 6, summarizing the main of the contributions while highlighting
some limitations and interesting perspectives worth to consider to improve the work.

2 Related work

As a research problem, detection of injuries, and especially fractures, in cervical spine has been a topic of
interest lately. Therefore, a variety of methods that are based on different techniques of machine learning
have been presented in the literature as attempts to find solutions to the problem. Among the exhibited
methods, the approached based on deep learning have demonstrated encouraging features. However,
they still require several improvements to be effective enough when integrated in clinical routines.

For instance, Small et al. [7] have investigated the application of a Convolutional Neural Network
(CNN) architecture that was developed by Aidoc, known as FDA-approved CNN, for the detection of
cervical spine fractures. The findings of the study have emphasized the potential of the tested model to
improve cervical fracture detection. However, they have also acknowledged certain limitations of CNNs
when they are applied to detect fractures. Notably, CNNs may struggle to detect areas of gross bony
translation and fractures characterized by distraction rather than linear bony features. Moreover, Merali
et al. [3] have conducted a study with the objective of developing a deep-learning model capable of
detecting cervical spinal cord compression in patients diagnosed with Degenerative Cervical Myelopathy
(DCM) in T2-weighted MRI scans. For this aim, the authors have employed ResNet-50 architecture
and have tested multiple network configurations to determine a suitable setup for the used dataset. The
used architecture, with a proper settings, has achieved an encouraging accuracy, however the results
in terms of specificity have been relatively low. Furthermore, Shaolong et al. [6] have presented a
comprehensive investigation into the utilization of deep learning techniques applied to MRI scans for
the detection and classification of lesions associated with cervical spinal cord diseases. For this reason,
the researchers have employed Faster R-CNN (Region Convolutional Neural Network) approach, which
combines a backbone convolutional feature extractor utilizing both ResNet-50 and VGG-16 networks.
This integration of latter networks yielded promising results in terms of prediction accuracy and speed
for lesion detection and recognition within cervical spinal cord MRIs. In addition, Tuan et al. [8] have
conducted an extensive investigation to develop an efficient and accurate method for the early detection
and localization of spine fractures. Through their experimentation, they have explored multiple machine
learning models and hence have identified a two-stage approach utilizing Deep CNN (DCNN) with RNN
and attention layers. The presented approach have had commendable performance in terms of running
time, resource utilization, and accuracy. In addition, Salehinejad et al. [4] have introduced a DCNN
with a Bidirectional Long Short-Term Memory (BLSTM) layer as the baseline architecture, that has
been specifically tailored for an automated detection of cervical spine fractures in CT axial images. The
performed study has shaded light on the potential of deep learning techniques in fracture detection and
has provided a foundation for future investigations aimed at refining and advancing automated fracture
detection algorithms in clinical settings. Unfortunately, the approaches presented by Small et al. [7],
Merali et al. [3], Shaolong et al. [6], Tuan et al. [8], and Salehinejad et al. [4] remain beneficial to
the health professionals who own the programs only. Therefore, they are restricted to a local use solely.
Recently, Showmick Guha et al. [1] have studied the performance of a variety of CNN models adapted
to cervical spine fracture detection using transfer-learning. The adapted methods include MobileNetV2,
InceptionV3, and Resnet50V2. Performed tests have revealed a superiority of MobileNetV2, which was
trained with data augmentation technique, over the other approaches. Consequently, the model has
been deployed for clinical use in the form of an Android application for smartphones. However, this kind
of deployment is not quietly proper to a clinical use, unless the attention is restricted to personal or
emergency use. On the other hand, many matters like constrained resources and model evolution need
to be resolved for a better usage.
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Figure 1: A representation of the proposed data pipeline.

3 Proposed multifaceted computational pipeline for the detec-
tion cervical spine fractures

In light of the importance and challenge of cervical spine fractures detection, we synergies cutting-edge
algorithms to present a new data pipeline specifically designed for CT images analysis. The proposed
data pipeline leverages the proven capabilities of Faster R-CNN for object localization and Next-ViT for
image classification, and adds insight from attention maps to focus on the region(s) of interest within an
analyzed CT image (i.e. the eventual fracture(s)). Explicitly, the presented data pipeline is essentially
composed of four stages, namely: volumetric image slicing, data augmentation to train Faster R-CNN,
object localization using Faster R-CNN and image cropping, and finally classification via Next-ViT. A
schematic representation of the proposed framework is presented in Fig. 1 and necessary details and
descriptions about the proposed data pipeline are given in the subsections below.

3.1 Volumetric image slicing

Cervical CT scans are 3D images rich in anatomical information. However, these latter are quite complex
to process by computerized approaches due to their excessive amount of data. The question raised here is
therefore how to exploit the richness of these data without getting trapped in computational bottlenecks?

Herein lies the critical importance of the image-slicing process. In fact, it transforms an intricate
3D spatial problem into a more manageable 2D problem space. Thus, slicing serves, on one hand, as a
strategic maneuver to reduce computational cost; on the other hand, it prepares the ground for expe-
ditious and focused downstream data processing. Specifically, the produced 2D slices can be orientated
to emphasize anatomical planes that are most relevant for the diagnosis of cervical spine fractures. This
ensures to retrain the most pertinent and diagnostically relevant information in the slices.

Furthermore, in this initial phase of the pipeline, slices are extracted from the original DICOM files of
CT scans using a specific function in 512 x 512 pixels format. Which are later resized into 224 x 224 pixels
format to match the input size expected by the Next-ViT model. In addition, windowing techniques are
applied to the extracted 2D slices to enhance their contrast. The window width and level are set to 1800
and 400, respectively.

3.2 Data augmentation to train Faster R-CNN

Data augmentation is a widely used technique to increase the size and diversity of the training datasets.
This is especially important as Faster R-CNN object detection model requires a large amount of labelled
data to be trained effectively. In the context of this study, the data augmentation is mainly performed
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by using random horizontal flipping, which can help the model learn to detect objects from different
perspectives.

3.3 Object detection and region cropping

In this stage, Faster R-CNN is used to detect and isolate regions of interest. Specifically, we take
advantage of Faster R-CNN’s ability to operate as a computerized lens, to scrupulously navigate through
the 2D slice images to discern and delineate regions that house potential fracture sites within the cervical
spine and to underscore their associated vertebra with bounding boxes. This act of object localization
constructs a vital foundational tier, guiding the ensuing procedures in the pipeline, which are designated
to further refine, dissect, and classify these pronounced areas suspected of fractures.

The localized regions of interest are subsequently cropped from the rest of their associated slices to
form small imagettes. Specifically, the aim of this phase is dual: firstly, to drastically curtail computa-
tional excess, and secondly, to concentrate the ensuing analysis on clinically pertinent regions. Explicitly,
the sectors of the cervical spine believed to harbour fractures, as pinpointed by Faster R-CNN.

3.4 Classification via Next-ViT

In this final stage, Next-ViT model is used to binary classify the imagettes previously produced to
distinguish between those really containing fractures and those that are not. This model was selected for
its unique set of attributes that align impeccably with our research goals. One of the standout qualities
of Next-ViT is its data efficiency. The model demonstrates impressive performance even when subjected
to small, annotated datasets. In addition, Next-ViT diverges from CNNs by incorporating self-attention
mechanisms. These latter mechanisms excel at identifying complex spatial and contextual relationships
within images, a feature invaluable for interpreting the complex imagery commonly found in cervical
spine studies.

Moreover, given the underwhelming results of our initial attempt to train a vision transformer from
scratch, we have chosen to adopt a pre-trained Next-ViT architecture, which led to a marked improve-
ment in our system’s efficacy. However, to better fit Next-ViT to our problem, we have performed a
refinement training of the model, specifically using data augmentation techniques by applying simple
transformations to the training dataset (i.e. rotation, scaling, and flipping). We hypothesize that these
simple transformations assist the model in understanding underlying data patterns, thereby improving
its learning capability.

4 Proposed cloud-based architecture for cervical spine fracture
detection

As a second contribution in this paper, we describe a robust and scalable cloud-based system that is
dedicated to the detection of cervical spine fractures. The cloud infrastructure serves as the backbone
supporting the entire multifaceted computational pipeline presented in Section 3 and offers unique ad-
vantages both in terms of computational resources and data management.

4.1 Motivations and goals

The presented architecture is motivated by several compelling incentives for coupling cloud computing
and deep learning models in the arena of cervical spine fracture detection. The impetus for adopting a
cloud-based approach originates from a critical need to address challenges in scalability, data integrity,
and real-time analytics. Below are the main key motivations:

1. Superior diagnostic accuracy: Traditional diagnostic approaches, although useful, sometimes
fail to identify complex or subtle fractures. The marriage of cloud-based computational power and
well established deep learning models has the potential to usher in a new era of nuanced and precise
diagnoses.

2. Operational efficiency: Utilizing the distributed computing power of the cloud alongside deep
learning models that can efficiently parse large sets of image data enhances the operational efficiency
of the diagnostic process. This could significantly reduce the time radiologists need to reach a
diagnosis.
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3. Scalability and adaptability: The inherent scalability of cloud infrastructure is well-suited
for handling the voluminous medical imaging data generated daily. This removes the need for
healthcare organizations to make significant investments in local computing resources.

4. Broadened access to advanced tools: Cloud-based systems democratize access to cutting-edge
diagnostic technologies. This model allows healthcare providers, regardless of their size or location,
to benefit from state-of-the-art tools without prohibitive upfront costs.

5. Augmentation of clinical decision-making: The synergy between cloud technology and deep
learning models can act as a potent decision-support mechanism. It can provide preliminary
evaluations that assist healthcare professionals in making timely and well-informed decisions.

6. Future-ready integration: The modular architecture of cloud-based systems makes them ripe
for seamless integration with existing electronic health records. This offers the possibility for more
integrated, collaborative approaches to healthcare delivery in the future.

Thus, the integration of cloud computing and deep learning models in the detection of cervical spine
fractures has the potential to surmount existing limitations, refine diagnostic protocols, democratize
access to state-of-the-art technologies, and fundamentally transform clinical practices in this vital area
of healthcare.

4.2 Description of the proposed cloud-based architecture

The proposed architecture is designed to be deployed in Google Cloud Platform (GCP), integrating its
services to offer an efficient end-to-end cervical spine fracture detection workflow. A general view of the
proposed cloud-based architecture for cervical spine fracture detection is illustrated in Fig. 2.

Initially, the overarching vision of crafting an integrated end-to-end diagnostic workflow for enhanced
cervical spine fracture detection stemmed from comprehensive brainstorming sessions. Significantly, it
was our deep dive into the vast capabilities of the Google Cloud Platform (GCP) that galvanized our
alignment with this mission. Building upon this foundation, our hands played a pivotal role in the
ensuing architectural design and execution phase.

Furthermore, recognizing the paramount importance of data integrity, we have channelled significant
efforts into devising an efficient automatic ingestion mechanism for CT scans. Simultaneously, with an
acute awareness of the sensitive nature of medical data, we have championed the incorporation of a
robust encryption protocol, ensuring that data remain secured.

Transitioning from data acquisition, our focus then have gravitated towards the multi-layered data
pipeline. Specifically, we have integrated in the proposed architecture the data pipeline elaborated in
Section 3, that meticulously optimize the mechanisms of pre-processing, feature extraction, and fracture
detection.

On the other hand, we believe in the interdependent nexus between machine learning methods and
human expertise and its capacity to offer better solutions, especially when they are combined appropri-
ately. This conviction has led to the establishment of a systematic feedback loop, where the invaluable
insights of medical professionals continuously enrich our cloud-based system. Through this mechanism,
their diagnostic evaluations directly inform and steer the iterative enhancements of the integrated models
in the proposed system.

Moreover, with an ever-evolving medical landscape, we need to ensure that the used models in the
architecture underwent consistent training sessions. By leveraging insights from the analytical database,
our diagnostic algorithms remain at the cutting edge, always adaptive to the latest nuances in medical
diagnostics.

Beyond the technical realm, we endeavour to foster a culture of interdisciplinary collaboration. By
orchestrating synergy between cloud experts, data scientists, and medical professionals, we strive to
ensure that our collective expertise coalesced seamlessly. This unity of purpose and knowledge-sharing
became instrumental in shaping our presented solution.

In summary, witnessing the transformative potential of our architecture in the realm of medical
diagnostics has been both a privilege and a testament to the collaborative prowess of our team. Our
journey exemplifies the boundless possibilities that emerge when cloud computing and machine learning
converge, especially in the ever-critical domain of healthcare. The amalgamation of GCP’s advanced
services presents a promising horizon for medical diagnostics. While this overview provides a high-
level design, the actual implementation should be tailored according to specific requirements, ensuring
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Epoch | Precision | Recall | mAPO0.5
80 0.9287 0.8857 0.9424
100 0.9687 0.9057 0.9724

Table 1: Performance metrics of the Faster R-CNN on the RSNA dataset.

a balance between functionality, budget, and privacy concerns. Collaboration with cloud and domain
experts is essential for the successful realization of such a system.
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Figure 2: A representation of the proposed cloud-based system.

5 Evaluation and discussion of the cervical spine fracture de-
tection system

The proposed multifaceted data pipeline has been trained and evaluated using the large RSNA public
dataset containing cervical spine CT scans [2]. In the setting of this work, the images of the dataset was
split into training (80%) and validation (20%) sets. The slices and their corresponding label files (.txt
files) are then organized appropriately into separate directories for training and validation.

Subsequently, we have downloaded Faster R-CNN’s code from TensorFlow, adjusted it and trained
it to meet our purpose. Thus, the performance of Faster R-CNN on the used dataset is assessed using
standard evaluation metrics, namely: precision, recall, and mean average precision at loU (mAP50).

The obtained results after 80 and 100 epochs are presented in Table 1. The yielded results showcase
the model’s potential in both recognizing and pinpointing objects within images after 80 and 100 epochs.

A summary of Faster R-CNN train loss metrics from one of the epochs during the model’s training
phase are present in Table 2. The table summarizes important performance indicators and parameters
that provide insights into the model’s training dynamics, namely : Loss, Loss Classifier, Loss Box Reg,
Loss Objectness, and Loss RPN Box Reg.

For visual illustration of the cropping operation results, we give in Fig. 3 cropped images obtained
from different slices.

Concerning the classification stage of the multifaceted data pipeline, the implementation of Next-ViT
requires setting appropriate values for model’s parameters. This is specifically done to insure a satisfying
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Parameter Best value | Averaged value
Loss 0.1576 0.3236
Loss Classifier 0.0490 0.1163
Loss Box Reg 0.0900 0.1130
Loss Objectness 0.0088 0.0790
Loss RPN Box Reg | 0.0040 0.0153

Table 2: Training Loss results.
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Figure 3: Illustrations of cropped vertebra.

balance between computational efficiency and detail resolution to make the model highly applicable in
clinical settings for which timely and accurate diagnosis is paramount. In the context of this work, we
have considered the parameter tuning exhibited in Table 3.

Parameter Value
Patch size 16 x 16
Latent space dimension 192

Number of encoder blocks | 12
Number of MLP heads 3
Total parameters ~5.5M

Table 3: Next-ViT model parameter tuning.

Also, it is worth to note that we have applied other adaptations to Next-ViT to meet our specific
needs. For instance, the output shape is printed and should be [16, 2] of shape. This is to say that for each
input image, we get 2 values as output, corresponding to fracture and no fracture results respectively.
In addition, to optimize the neural network, we have employed RAdam optimizer and used a learning
rate of 0.001. Specifically, the value of 0.001 is considered a moderate choice, which is neither too high
to cause instability nor too low to slow down the learning process. This value is often recommended for
Adam and its variants like RAdam due to its effectiveness in a wide range of scenarios.

To validate the robustness and effectiveness of Next-ViT model, we have used two metrics: accuracy
and loss. Hence, the obtained validation results of the model on the RSNA 2022 Cervical Spine Fracture
Detection dataset are shown in the graphs presented in Fig. 4. From the latter figure, it is easy to notice
that the performance of the Next-ViT model improved through the epochs for both accuracy and loss
validation metrics, until achieving a validation accuracy of 95.5% and a validation loss of 2%. This is
particularly promising because it suggests that the Next-ViT could be used to develop a fast and accurate
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Al-based system for cervical spine fracture detection. Such a system could be used to help radiologists
identify fractures more quickly and reliably, and it could also be used to screen patients for suspected
fractures in emergency settings.
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Figure 4: Validation results of Next-ViT.

Moreover, a comparison of the work presented herein with the concurrent work of Showmick Guha
et al. [1] that is recently exhibited in the literature is reported in Table 4. From the latter, it is easy
to notice that the model of Showmick Guha et al. [1] presents the best accuracy currently. However,
the proposed model is more subtitle to offer a superior diagnostic accuracy in the future. In fact, the
exhibited architecture foresees continuous model refinement training by taking into consideration the
capacity of accepting new unseen data as well as correcting feedback from experts who use the system.
So, the two features guarantee a continuously improving diagnostic accuracy. Furthermore, despite the
fact that the two works ensure a real time response, nevertheless, the proposed system is clearly more
adapted to clinical routines considering the fact that it is deployed on the cloud. Hence, it offers a better
scalability and adaptability in terms of resources, brocaded access to advanced tools, and future-ready
integration compared to its concurrent work which is designed for miniaturized systems essentially made
for a personal use.

Feature Proposed work | Showmick Guha et al. [1]
Best accuracy 95,5 % 99.75 %

Deployment Cloud Android application
Real-time response Considered Considered

Model refinement possibility Considered Not considered

Data integrity Considered Not considered

Storage and processing capacity | High Very low

Table 4: Comparison between the proposed work and a concurrent work according to few features.

6 Conclusion

The confluence of Al, medical imaging, and cloud computing represents a promising avenue for revolution-
izing the healthcare domain. In this setting, we have made a couple of contributions which are exhibited
in this document. Mainly, we have introduced a new comprehensive computational data pipeline tailored
for the detection of cervical spine fractures. Specifically, the proposed data pipeline is composed of four
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stages, each of which fulfils a unique role to achieve high diagnostic precision and reliability. Further-
more, motivated by several key goals such as improving diagnostic accuracy, increasing scalability, and
enhancing data security, we have exhibited, as our second main contribution, a new cloud-based system to
extend the capabilities of our computational data pipeline. The new cloud-based architecture represents
a paradigm shift in how cervical spine fractures can be detected and managed. The proposed cloud-based
system not only streamlines the workflow but also allows for continuous improvement through real-time
feedback mechanisms.

Furthermore, the experimental study comprising the implementation, training, and validation of
the presented comprehensive computational data pipeline over the RSNA 2022 Cervical Spine Fracture
Detection dataset has shown an encouraging performance with regard to a concurrent work in the
literature.

While the findings of this paper are compelling, they raise several salient questions that could form the
basis of future scholarly inquiry. These include prototyping the proposed cloud-based diagnostic system
and its convenience to resource-constrained devices, as well as further refinements and improvements of
the proposed multifaceted data pipeline by the integration visualization mechanisms or with the adoption
of emerging artificial intelligence paradigms such as deep reinforcement learning and federated learning.
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Abstract

The increasing complexity of smart grid systems necessitates advanced methodologies to ensure
reliable stability classification and seamless power delivery across consumer domains. This study
introduces an innovative ensemble learning framework designed to classify smart grid stability using
the Smart Grid Stability Augmented dataset. The proposed framework integrates multiple ensemble
techniques, including Bagging, AdaBoost, Stacking, and Voting Classifiers, to improve robustness,
accuracy, and reliability. A 5-fold cross-validation strategy is implemented to minimize overfitting
and validate model performance. The dataset undergoes preprocessing with feature standardization
and binary encoding of the target variable to ensure uniform contributions from all features. Ex-
perimental results indicate that the soft Voting Classifier, which is a combination of single machine
learning models logistic regression, support vector machine, and random forest (LR+SVC+RF), out-
performs other models by achieving a peak accuracy of 97.3%, demonstrating exceptional stability
classification performance. Compared to individual machine learning models and existing state-of-
the-art approaches, the proposed ensemble framework exhibits superior performance across multiple
evaluation metrics. These results underscore the potential of ensemble learning in enhancing smart
grid stability, contributing to more reliable and efficient power grid management systems.

Keywords: Grid Stability, Ensemble Learning, Bagging, AdaBoost, Soft Voting, stacking, Cross-
Validation

1 Introduction

The smart grid is an advanced concept aimed at transforming the future electricity network by enhancing
its flexibility,

adaptability, and autonomous management [20], [16]. This complex system incorporates various in-
terconnected subsystems [16], integrating diverse disciplines and enabling the autonomous operation and
control of its parts. It is geographically spread out and consists of a wide range of components. Addition-
ally, the smart grid demonstrates emerging behaviors and continuous development. As a key element in
a global network of linked systems, it encourages collaboration to promote the development of innovative
services across different sectors. The primary factors propelling advancements in this field are energy
efficiency and optimized resource management at both local and global levels, requiring comprehensive
monitoring and control [12]. As electricity demand rises with population growth, the dependence on nat-
ural resources for power generation increases. Nevertheless, this process remains intricate and expensive.
Significant research has been directed towards enhancing grid networks to improve power distribution
efficiency. The smart grid offers a promising solution by leveraging Information and Communication
Technology (ICT) to gather data on consumer behavior, thereby enabling the creation of context-aware
systems that optimize power distribution efficiency [10]. Traditional stability analysis and control meth-
ods have proven insufficient for managing the complexities of modern smart grids. In response, recent
advances in artificial intelligence (AI) provide effective tools to meet the high demands of security and
stability in these systems [14]. The development of an intelligent grid that can accurately predict power
demand is essential. This can be achieved through the application of Machine Learning (ML) algorithms
[3], [6] to analyze the large amounts of data generated by the grid. These advancements in smart grid
technology are crucial for reducing environmental pollution and lowering electricity costs, promoting a
more cost-effective and sustainable energy system.
Recent developments in artificial intelligence (AI) and machine learning (ML) have significantly enhanced
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the prediction and management of smart grid stability and energy systems. Oqaibi and Bedi (2024) in-
troduced a hybrid forecasting system that integrates data deconstruction and attention mechanisms,
achieving a prediction accuracy of 90.45% on the Kaggle dataset. Their work emphasizes the need for
optimizing hybrid models to reduce computational complexity and improve prediction efficiency [15]. Xu
et al. (2024) proposed a time-series depthwise separable convolutional neural network (CNN) with an
attention mechanism, reaching 88.9% accuracy using the UCT dataset. Their study underscores the im-
portance of large datasets for effectively training deep learning models [8]. Further contributions include
Mohsen (2023), who developed an efficient artificial neural network (ANN) model for Decentralized Smart
Grid Control (DSGC) systems, achieving a testing accuracy of 97.36% and a perfect AUC score of 100%
through hyperparameter tuning [18]. Similarly, Alsirhani (2023) combined Multi-Layer Perceptron and
Extreme Learning Machine (MLP-ELM) with Principal Component Analysis (PCA), attaining 95.8% ac-
curacy, which highlights its potential for improving grid reliability amid fluctuating energy demands and
growing renewable integration [1]. Javaid (2022) proposed a novel stacking ensemble model, MLBCSM,
which combines multiple boosting classifiers (AdaBoost, XGBoost, HistBoost, CatBoost, LGBoost) with
an Adaptive Synthetic Sampling Technique (ADASYN) to address data imbalance. The model, which
includes data preprocessing, balancing, and classification, outperformed traditional methods, achieving
92.39% accuracy and 93.22% recall. These results demonstrate its effectiveness in detecting the stability
in smart grids [14].

In this work, a novel ensemble-based machine learning approach is proposed to predict the stability of
smart grids by classifying the Smart Grid Stability Augmented Dataset. The experimental results are
compared with recent machine learning algorithms, including individual classifiers such as KNN, NB,
Support Vector Classifiers, as well as ensemble methods like Bagging, AdaBoost, Stacking, and soft
Voting Classifiers. The main steps involved in our contribution:

1. The Smart Grid Stability Augmented Dataset is loaded, and stability labels are mapped to binary
values. The dataset is shuffled, and features are standardized to facilitate model convergence.

2. Four ensemble learning models Bagging, AdaBoost, Stacking, and Voting Classifiers are defined.
These models utilise a variety of base learners, including Decision Trees, Logistic Regression, Random
Forest, and Support Vector Classifier, to enhance predictive accuracy.

3. A 5-fold cross-validation strategy is employed to evaluate model performance, ensuring robust esti-
mates of model effectiveness and mitigating overfitting risks.

4. Quantitative comparison of the models’ performance is provided. The voting achieves the highest ac-
curacy and AUC, while Stacking Classifier excels in integrating multiple models. AdaBoost and Bagging
show strong performance in balancing precision and recall, and the Voting Classifier provides competitive
results across all metrics.

with voting method reaching an accuracy of 97.3%, demonstrating superior predictive capability com-
pared to individual models and other state-of-the-art models.

The rest of the paper is organized as follows. Section II discusses recent state-of-the-art literature
related to the application of deep learning algorithms on smart grids. In Section III,the proposed model
is discussed in detail. Experimental results are discussed in Section IV, which is followed by a conclusion
and future work in Section V.

2 Proposed approach

A variety of machine learning algorithms can be applied to the problem of stability detection, with their
effectiveness typically evaluated using metrics such as accuracy and false positive rates. To improve
prediction performance and reduce false positives, researchers have proposed numerous ensemble learn-
ing methods. Ensemble learning techniques combines multiple machine learning algorithms to achieve
enhanced predictive performance compared to standalone models [13]. Broadly, ensemble learning is
categorized into two types: parallel and sequential [17] Parallel methods, such as bagging and random
forests, train independent base classifiers to promote diversity, whereas sequential methods, including
boosting, iteratively refine weak learners to improve accuracy. Ensemble methods are particularly ro-
bust and adaptable, excelling in scenarios involving noisy or complex data. This study introduces an
ensemble learning framework to classify the stability of smart grid systems using the Smart Grid Sta-
bility Augmented dataset. The methodology incorporates various ensemble techniques to enhance the
robustness, accuracy, and reliability of stability predictions. In this section, we describe the architecture
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of our system as shown in Figure 1.
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Figure 1: Architecture of the proposed system

The approach is structured as follows:

2.1 DATA PREPROCESSING

Pre-processing is a critical step in improving data quality and enhancing the performance of machine
learning (ML) models. The Smart Grid Stability Augmented dataset includes features related to grid
stability and a target label (stabf) that indicates stability (stable or unstable). The variability in feature
ranges within the dataset can lead to biases, as features with higher magnitudes may dominate during
model training. To address this, StandardScaler is employed for data normalization, ensuring all features
contribute equally. This technique transforms the data into a common scale, thereby enhancing classifier
performance. The categorical target variable is mapped to binary values, where: 0: : represents an
unstable state and 1: indicates stability. Non-numeric values in the dataset are converted to numeric
format using encoding techniques to make the data suitable for ML algorithms. Additionally, the dataset
is shuffled to mitigate any ordering bias, further ensuring the robustness and reliability of the training
process.

2.2 CROSS VALIDATION

To enhance model reliability and generalization, a 5-fold cross-validation strategy is employed. The
dataset is divided into five equal parts, where each part is used as a validation set once, while the
remaining four are used for training. This approach minimizes overfitting and ensures.

2.3 ENSEMBLE LEARNING METHODS

In this part, we explore the ensemble learning paradigm, focusing on its fundamental components, com-
bination techniques for base learners, and methods for selecting ensembles.

2.3.1 Bagging (Bootstrap Aggregating) classifier

Bagging, or Bootstrap Aggregating, is an ensemble learning technique designed to reduce model variance
and improve predictive accuracy by combining multiple base models [4], [21]. In this approach, each
base model is trained on a distinct bootstrapped sample of the dataset, created by random sampling
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with replacement. For this study, the Decision Tree Classifier is utilized as the base learner, with a
total of 50 estimators. Each tree is independently trained on a bootstrapped sample, enabling the model
to capture diverse patterns within the data. After training, predictions for unseen data are obtained by
aggregating the outputs of all 50 models:

e For regression tasks, the final prediction is the average of all individual predictions.
e For classification tasks, the final prediction is determined by majority voting among the models.

This ensemble strategy significantly reduces the variance of the model compared to a single decision
tree, leading to more stable and accurate predictions. The Bagging approach is particularly effective for
noisy or complex datasets, such as those encountered in smart grid stability detection. By leveraging
multiple models and aggregating their outputs, Bagging enhances the robustness and generalization
ability of the framework, making it a reliable choice for high-stakes applications in smart grid systems.

2.3.2 AdaBoost (Adaptive Boosting) Classifier

In this study, the AdaBoost algorithm was chosen as the boosting method. Developed by Freund and
Schapire [7], AdaBoost is one of the most widely used boosting techniques, offering a strong theoretical
foundation and proven efficacy in generating accurate predictions. AdaBoost constructs a strong classifier
by combining the weighted outputs of weak classifiers, addressing earlier boosting methods limitations.
In our implementation of AdaBoost begins by initializing equal weights for all training samples. In
each boosting round, a weak learner (in this case, a Decision Tree Classifier) is trained on the weighted
dataset. The classifier’s weighted error is calculated, and its performance is quantified using a weight .
This weight determines the importance of the weak learner in the final ensemble.

Misclassified samples are assigned higher weights, making them more influential in subsequent it-
erations. The process is repeated for T boosting rounds, where T' = 50 in this implementation. The
final prediction is made by combining the outputs of all weak classifiers, weighted by their respective
importance values.

2.3.3 Stacking

Stacking is an ensemble learning technique that combines predictions from multiple base models (level-0
models) and refines them using a meta-model (level-1 model) [3]. The primary goal is to leverage the
strengths of individual models and optimize the final prediction by training an additional layer. In our
implementation:

e Base Models: Random Forest and Support Vector Classifier are trained independently on the
training dataset. Each model generates predictions, capturing unique patterns within the data.

o Meta-Model: Logistic Regression is used as a second-level model, which takes the predictions of
the base models as input. It learns to combine these predictions optimally, mitigating individual
weaknesses.

e Workflow: The training process involves generating predictions for the validation set using the
base models, constructing a new dataset comprising these predictions, and training the meta-model
on this dataset. During inference, the base models generate predictions for unseen data, which are
then aggregated by the meta-model to produce the final output.

2.3.4 Voting Classifier Algorithm (Soft Voting)

The voting Classifier is an ensemble learning method that combines predictions from multiple base models
to improve predictive accuracy and robustness [9]. In the context of this study, Soft Voting is used, which
involves averaging the predicted probabilities from each of the base models. The base models utilized in
this framework include:

e Random Forest
e Support Vector Classifier (SVC)

e Logistic Regression
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Algorithm 1 presents the implementation details of the Soft Voting Classifier. This algorithm inte-
grates multiple base models by averaging their predicted class probabilities, ensuring a more robust final
prediction. The base models utilized in this study include Random Forest, Support Vector Classifier
(SVC), and Logistic Regression. Each model generates probability estimates for each class, and the final
prediction is determined by selecting the class with the highest average probability.

Algorithm 1 Voting Classifier Algorithm (Soft Voting)

0: Input:

0 Training dataset D = {X,y}, where X denotes feature vectors and y represents class labels.
0 Base Models: Random Forest, Support Vector Classifier, and Logistic Regression.

0:  Soft Voting aggregation scheme.

0: Output: Final predicted class labels §gpai-

0: Step 1: Train each base model on the training dataset D.

0 model,; + Train Random Forest on D.

0:  modely < Train Support Vector Classifier on D.

0:  models < Train Logistic Regression on D.
0
0
0
0
0
0
0
0

: Step 2: For each test instance xtest, Obtain probability estimates from each model:
p1 < Probability prediction from model; for xiest.

p2 < Probability prediction from models for xiest.

: p3 < Probability prediction from models for Tieg.

: Step 3: Compute the average probability for each class:

Pavg(ci) = 3 (p1(ck) + p2(ck) + ps(cx)) for each class c.

: Step 4: Assign the class with the highest averaged probability as the final prediction:
Jfinal = argmaxy, Payvg(cr), where k denotes the class label index. =0

3 Results and Discussion

This section presents the results from the experiments conducted to assess the performance of the pro-
posed ensemble learning approach for smart grid stability detection, using the Smart Grid Stability
Augmented dataset comprising 60,000 samples.

The experiments were executed on Google Colab, utilizing an online GPU service, with additional pro-
cessing on a personal computer running Linux OS and an Intel Core i5 processor. Python 3.7 and
libraries such as scikit-learn and pandas were employed for model implementation and evaluation.
The dataset, sourced from the UCI Machine Learning Repository [5], consists of 60,000 instances and 14
attributes related to factors influencing smart grid stability. The target variable indicates system stabil-
ity with binary labels: 0 for unstable and 1 for stable. The performance of the model was evaluated using
several metrics. Accuracy was calculated as the ratio of correct predictions (True Positives and True
Negatives) to total instances. Precision measured the accuracy of predicted stable instances, while Recall
assessed the proportion of actual stable instances correctly identified. The F1 Score, as the harmonic
mean of Precision and Recall, provided a balanced measure, and Specificity evaluated the proportion of
correctly predicted unstable instances. These metrics collectively evaluate the overall effectiveness of the
ensemble learning model for smart grid stability detection.

The results presented in Table 1 demonstrate the performance of various ensemble learning models

in detecting smart grid stability. The models evaluated include Bagging, AdaBoost, Stacking, and soft
Voting classifiers, each exhibiting different strengths in terms of accuracy, precision, recall, F1 score,
cross-validation accuracy, and ROC AUC. The Bagging classifier performed well with an accuracy of
91.6%, but lagged behind in precision and recall, suggesting challenges in accurately identifying stable
and unstable grid states. AdaBoost showed improved precision and F1 score over Bagging, but still had
a lower recall, meaning it missed some stable instances.
The Stacking classifier, which combines multiple models, achieved the highest performance with an
accuracy of 95.5%, precision of 94.3%, and ROC AUC of 99.3%, demonstrating strong generalization
and the ability to discriminate grid stability effectively. The Voting classifier performed the best overall,
with an accuracy of 97.3%, precision of 96.6%, and an impressive ROC AUC of 99.7%. This model’s
performance was bolstered by combining multiple classifiers in a soft-voting scheme, making it highly
robust for smart grid applications.
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As shown in Figure 2, the Voting and Stacking classifiers emerged as the top performers, offering the best
accuracy and ROC AUC scores. These models are particularly suited for real-time smart grid stability
detection, where high precision, recall, and robustness are critical. The 5-cross-validation accuracy values
for all methods indicate stability in model performance across different subsets of the data, further
validating the models’ reliability and generalization.

Model Comparison
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Figure 2: Comparison between ensemble learning methods using 5-cross validation

From Figure 3, the analysis of the learning curves reveals a consistent trend of convergence toward
high performance across all ensemble methods, showcasing their strong generalization capabilities. The
performance for all models indicate that ensemble techniques effectively handle the complexity of the
classification task, leading to optimal predictions. Notably, Stacking and Voting models outperform other
methods in most metrics, demonstrating their robust ability to combine diverse features for superior
results. Bagging and AdaBoost, while slightly behind in some metrics, still deliver highly competitive
performances, further reinforcing the effectiveness of ensemble learning in enhancing classification tasks.

Table 1: Model Comparison Results

Model Accuracy | Precision | Recall | F1 Score | ROC AUC
Bagging 0.916 0.888 0.879 0.883 0.975
AdaBoost 0.926 0.914 0.878 0.895 0.983
Stacking 0.955 0.943 0.930 0.937 0.993
Voting 0.973 0.966 0.958 0.962 0.997

4 Comparison with Existing Approaches

In this study, we evaluated the performance of our proposed ensemble models for smart grid stability de-
tection, comparing them with existing methods based on key metrics such as accuracy, precision, recall,
and F1 score as shown in Table 2 . Previous techniques like CART (80.0%), XGBoost (97.82%), and
stacking ensemble models (92.395%) showed competitive results, with Mohsen et al. (2023) achieving
the highest accuracy of 97.36% using an ANN-based MLP model. Our ensemble models demonstrated
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Table 2: Comparison of Our Proposed Approach with Existing Approaches
Year Reference Prediction Technique Accuracy (%) | Precision | Recall | F1 Score
2018 Arzamasov et al. [19] CART 80.0 - - —
2019 Chen et al. [11 XGBoost 97.82 - - -
2022 Javaid et al. [14] Stacking ensemble model, MLBCSM 92.395 - 93.222 -
2023 Alsirhani et al. [1] MLP-ELM 95.8 - - -
2023 Mohsen et al. [18] ANN based on MLP 97.36 98.02 98.03 98.02
2024 Alessandro et al. [§] GAN-GRID 90.45 - - -
2024 Single Model (SVM) [2] SVM 81.0 0.869 0.810 0.843
2024 | Single Model (KNN) [2] KNN 82.3 0.881 0.823 0.855
2024 Single Model (DT) [2] Decision Tree (DT) 83.4 0.891 0.834 0.866
2024 Single Model (MLP) [2] MLP 84.3 0.897 0.843 0.875
2024 | Single Model (RF) [2] Random Forest (RF) 874 0.917 0.874 0.900
2025 Our Model (Bagging) Bagging 91.6 0.888 0.879 0.883
2025 Our Model (AdaBoost) AdaBoost 92.6 0.914 0.878 0.895
2025 Our Model (Stacking) Stacking 95.5 0.943 0.930 0.937
2025 | Our Model (Soft Voting) Soft Voting 97.3 0.966 0.958 0.962
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significant improvements. The Bagging model achieved 91.6% accuracy, AdaBoost improved to 92.6%,
and Stacking reached 95.5%. The Voting classifier outperformed all, with 97.3% accuracy and impres-
sive precision (0.966), recall (0.958), and F1 score (0.962). These results highlight the effectiveness of
ensemble learning in enhancing smart grid stability detection, with advanced methods like Stacking
and Voting delivering superior accuracy and balanced performance, showcasing the power of combining
diverse models for optimal stability detection in smart grid applications.

5 Conclusion

In this study, we have proposed an ensemble learning framework for smart grid stability detection,
leveraging techniques such as Bagging, AdaBoost, Stacking, and soft Voting Classifiers. These methods
were evaluated on the Smart Grid Stability Augmented dataset, demonstrating their robustness, accu-
racy, and reliability in predicting grid stability. Experimental results showed that while simpler models
such as Bagging and AdaBoost provide competitive results, more advanced ensemble methods, including
Stacking and soft Voting, significantly outperform them, offering higher accuracy, precision, recall, and
F1 scores. In particular, the Voting classifier achieved the best overall performance, showcasing the
benefits of combining multiple strong classifiers to improve prediction reliability. The results indicate
that ensemble learning techniques are well-suited for smart grid stability detection, providing a reliable
and scalable solution for ensuring grid stability in real-world applications. Future research could focus
on enhancing the proposed framework by integrating it with real-time data from smart grid systems to
assess its adaptability in dynamic and evolving environments. Furthermore, exploring the use of deep
learning models and hybrid ensemble techniques may offer additional performance improvements. Inves-
tigating the incorporation of feature selection or dimensionality reduction methods could also enhance
model efficiency and computational scalability.
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Abstract

Deepfake technology, driven by Generative Adversarial Networks (GANs), poses challenges in dig-
ital security by enabling highly realistic synthetic media. This study proposes a detection framework
combining Convolutional Neural Networks (CNNs) for local feature extraction and Vision Trans-
formers (ViTs) for global analysis. Evaluated on two datasets, CNNs achieved 97.1 % accuracy on a
140K-image dataset, outperforming ViTs at 90.06%, though ViTs showed better generalization. De-
spite these advances, deepfake detection faces challenges like adversarial attacks and dataset biases.
Future work will enhance real-time processing, robustness, and multi-modal approaches integrating
audio and behavioral cues.

Keywords: Deep Learning (DL), Deepfake Detection, Convolutional Neural Networks (CNN),
Vision Transformers (ViT), Generative Adversarial Networks (GAN).

1 Introduction

The rise of deepfake technology has brought significant challenges to digital media security, enabling the
creation of highly realistic synthetic images and videos. While deepfakes have applications in entertain-
ment and creative industries, they also pose serious threats, including misinformation, identity fraud,
and political manipulation. The increasing sophistication of Generative Adversarial Networks (GANSs)
has made detecting manipulated media more complex, necessitating advanced detection techniques. This
study proposes a deepfake detection framework leveraging Convolutional Neural Networks (CNNs) and
Vision Transformers (ViTs) to enhance classification accuracy. Using two datasets—a 140K Real and
Fake Faces dataset and a smaller Real and Fake Face Detection dataset—the models are trained and
evaluated based on accuracy, loss, and robustness. The paper is structured as follows: Section 2 reviews
deepfake generation and detection techniques, Section 3 presents the methodology, Section 4 discusses
experiments and results, and Section 5 concludes with future perspectives. This research contributes to
the ongoing efforts to strengthen digital media security and combat deepfake threats. [?].

2 Review methodology and literature

Deepfake technology, powered by deep learning and artificial intelligence, has rapidly evolved in recent
years, leading to highly realistic synthetic media that are often indistinguishable from authentic content.
While this techno-logy has numerous positive applications in entertainment and creative industries, it
also poses significant risks, including misinformation, identity fraud, and political manipulation. This
section provides a comprehensive overview of deepfake generation techniques, detection methodologies,
and the current challenges in combating manipulated media.

2.1 Deepfake Generation Techniques

Deepfake generation has rapidly evolved with advancements in deep learning, particularly through the
use of Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). These tech-
niques allow the synthesis of highly realistic images, videos, and audio that are increasingly difficult to
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distinguish from authentic media. This section provides an overview of the most prominent deepfake
generation methods and their impact on digital media.

e Generative Adversarial Networks (GANs) Generative Adversarial Networks (GANs) are
among the most widely used architectures for deepfake generation. A GAN consists of two compet-
ing neural networks: a generator that produces synthetic media and a discriminator that attempts
to distinguish between real and generated content. Through iterative training, the generator im-
proves its ability to create highly realistic outputs. Advanced variations, such as StyleGAN and
StyleGAN2, have significantly enhanced the quality of generated images by enabling fine-grained
control over facial features, expressions, and lighting conditions [1]. Recent studies have also ex-
plored the potential of Latent Flow Diffusion (LFD), which incorporates optical flow sequences in
the latent space to enhance temporal coherence in deepfake videos [11]. Compared to conventional
GANs, LFD provides better preservation of spatial and motion consistency, making generated
videos appear more authentic.

e Variational Autoencoders (VAEs) and Hybrid Models Variational Autoencoders (VAEs)
are another class of generative models used in deepfake generation. Unlike GANs, which rely
on adversarial training, VAEs learn a probabilistic representation of data to generate realistic
samples. They have been particularly effective in face-swapping applications, where they enable
smooth blending of facial features while maintaining structural consistency [15]. Hybrid models
combining GANs and VAEs have also gained traction. These models leverage the structured latent
space of VAEs with the adversarial refinement of GANs to generate higher-quality deepfakes. The
integration of attention mechanisms within these architectures has further improved the realism of
generated media by focusing on fine details such as skin texture and micro-expressions [2].

e Face manipulation techniques Face manipulation techniques in deepfake generation can be
categorized into three main types: Face Swapping: This technique replaces the face of a person
in a video with another person’s face while maintaining the original facial expressions and move-
ments. It is commonly implemented using autoencoders and GANs. The DF-Platter dataset [12]
demonstrates that face-swapping deepfakes can be generated at both high and low resolutions,
highlighting the challenges in detection. Facial Attribute Manipulation: This method alters spe-
cific facial features such as age, gender, and expressions. It is achieved using models like StarGAN
and AttGAN, which modify targeted attributes while preserving the overall identity of the subject
[2]. Such manipulations are widely used in applications ranging from entertainment to identity
anonymization. Lip-Sync Manipulation: This technique synchronizes lip movements with an audio
track, making it appear as though a person is speaking words they never actually said. Models
like Wav2Lip and SyncGAN have demonstrated impressive results in creating realistic lip-sync
deepfakes, posing significant challenges in forensic detection [15].

e Text-to-Image and Text-to-Video Synthesis With the advent of large-scale generative mod-
els, deepfake generation has extended beyond face manipulation to full-body synthesis. Text-to-
image and text-to-video synthesis models, such as DALLeE and Stable Diffusion, enable the cre-
ation of highly realistic synthetic content based on textual descriptions. These models use diffusion
processes to iteratively refine images, resulting in high-fidelity outputs that can be used for both
benign and [14]. Furthermore, recent research has explored deepfake phylogeny, which examines
how iterative manipulations can evolve deepfakes over multiple generations, leading to increasingly
deceptive synthetic media [13]. The DeePhy dataset was developed to study the progression of
deepfakes and their impact on detection algorithms.

e Challenges in Deepfake Generation While deepfake generation techniques have significantly
improved, they present substantial ethical and security concerns. The ability to create highly re-
alistic synthetic media has raised issues related to misinformation, identity fraud, and political
propaganda. The development of novel detection techniques must keep pace with advancements in
generation methods to mitigate potential risks [20]. Moreover, existing deepfake generation mod-
els often suffer from limitations such as excessive computational requirements, data dependency,
and difficulty in generating highly dynamic scenes. Researchers are exploring ways to enhance
the efficiency and realism of these models while addressing concerns related to misuse and ethical
responsibility [4]. Deepfake generation techniques have advanced rapidly with the integration of
GANs, VAEs, and hybrid models. Face manipulation methods such as face swapping, attribute
manipulation, and lip-syncing have reached new levels of realism, making detection increasingly
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challenging. The emergence of text-to-image and text-to-video synthesis models has further ex-
panded the capabilities of deepfake technology. However, as generation methods evolve, the need
for robust and adaptive detection frameworks becomes more critical. Future research must fo-
cus on improving the interpretability of generative models, developing counter-measures against
adversarial attacks, and ensuring the ethical use of deepfake technology.

2.2 Deepfake Detection Techniques

As deepfake generation techniques continue to evolve, detecting these synthetic manipulations has be-
come an essential challenge in digital media security. Various deep learning-based approaches, including
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer-based
models, have been developed to distinguish real content from manipulated media. This section pro-
vides an overview of state-of-the-art deepfake detection techniques and their effectiveness in different
application domains.

e Convolutional Neural Networks (CNNs) for Image and Video Detection Convolutional
Neural Networks (CNNs) have been widely adopted for deepfake detection due to their ability to
extract spatial features from images and videos. CNN-based models analyze inconsistencies in pixel
distributions, texture artifacts, and facial asymmetries that may not be perceptible to the human
eye. Studies have shown that CNNs, particularly Xception and MobileNet architectures, achieve
high accuracy in detecting face-swapping deepfakes, with results ranging between 91% and 98%
depending on the dataset used [7]. Despite their effectiveness, CNN-based models face challenges
when applied to real-world deepfakes. These models often struggle with generalization across
different datasets due to biases introduced during training. Additionally, CNNs primarily focus on
spatial features, making them less effective in detecting temporal inconsistencies in deepfake videos
[17].

¢ Recurrent Neural Networks (RNNs) and Temporal Analysis To address the limitations
of CNNs in video deepfake detection, Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks have been utilized for temporal analysis. These models analyze sequen-
tial frames in a video to detect unnatural facial movements, such as inconsistent blinking patterns
or unnatural lip-syncing [9]. The use of spatiotemporal convolutional networks has further en-
hanced the capability of RNN-based approaches. For example, the Celeb-DF dataset benchmark
demonstrated that incorporating temporal features significantly improves detection accuracy, out-
performing frame-based detection models [10]. However, these approaches remain computationally
expensive and require substantial processing power, limiting their feasibility for real-time applica-
tions.

e Transformer-Based Models for Deepfake Detection Recent advancements in deep learning
have led to the adoption of Transformer-based models for deepfake detection. Vision Transformers
(ViTs) leverage self-attention mechanisms to capture both local and global dependencies in an im-
age, making them highly effective in detecting subtle deepfake artifacts. Multi-modal Transformer
architectures, such as M2TR, integrate RGB and frequency-domain features to improve detection
accuracy [10]. Compared to CNNs and RNNs, Transformer-based models demonstrate superior
generalization capabilities across different datasets. They are particularly effective in detecting
complex deepfakes that incorporate high-quality synthesis techniques. However, their high com-
putational cost remains a challenge, necessitating further research into optimization techniques for
practical deployment [6].

e Multi-Modal Deepfake Detection Approaches Multi-modal deepfake detection approaches
integrate information from multiple sources, such as visual and auditory cues, to enhance detection
robustness. Joint audio-visual deepfake detection has been proposed as an effective strategy, lever-
aging synchronization inconsistencies between speech and facial expressions [22]. These methods
have shown promising results in identifying lip-sync deepfakes and voice-cloning manipulations. In
addition to audio-visual synchronization, PRNU (Photo-Response Non-Uniformity)-based methods
have been explored for deepfake detection. PRNU, commonly used in digital forensics, identifies
unique device fingerprints left during the image capture process. Recent studies indicate that
PRNU-based approaches can complement deep learning models in hybrid detection frameworks
8]
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e Challenges in Deepfake Detection Despite advancements in deepfake detection, several chal-
lenges remain: Generalization Across Different Datasets: Most deepfake detection models struggle
with dataset-specific biases. Methods trained on one dataset often fail to generalize well to un-
seen deepfakes generated by different techniques [3]. Adversarial Robustness: Adversarial attacks
can be used to fool deepfake detection models by introducing imperceptible perturbations. This
highlights the need for more robust adversarial training strategies [16]. Real-Time Processing Ef-
ficiency: Many state-of-the-art detection models are computationally intensive, making real-time
deepfake detection a significant challenge [18].

e Future Directions in Deepfake Detection To improve deepfake detection, future research
should focus on: Hybrid Detection Models: Combining CNNs, RNNs, and Transformer-based
models to leverage their respective strengths. Few-Shot and Zero-Shot Learning: Reducing re-
liance on large labeled datasets to enhance detection generalization [21]. Blockchain and Forensic
Watermarking: Implementing digital watermarking techniques to verify content authenticity and
track manipulations [5].

3 Contribution

This section presents the methodology adopted for deepfake detection. It begins with a description of
the proposed project, followed by the system architecture and the development process of the models
used. The chapter also includes details on the dataset, implementation, and performance evaluation of
the deep learning models.

3.1 Project Description

Our proposed project consists of two main phases: the generation phase using GANs and the detection
phase, where we evaluate two efficient deep learning models—CNN and ViT—to differentiate between
real and fake images.

¢ Generation Phase (Using GANs) : In the generation phase, fake images are created using a
GAN architecture, which comprises two adversarial neural networks: a generator and a discrimina-
tor. The generator takes a random latent vector as input and produces synthetic images, which are
then passed to the discriminator. The discriminator, which has access to both real and generated
images, is trained to distinguish between them, thereby forcing the generator to improve its ability
to create realistic images. This generation process is crucial because deepfake detection models rely
on deep learning, which requires large datasets for accurate predictions. However, many existing
datasets suffer from low image resolution and are too small to effectively train advanced models
like ViT.

¢ Detection Phase (Using CNN & ViT Models) For the detection phase, both the CNN
and ViT models receive an image as input. Before processing, the images go through a data
preprocessing step to ensure optimal training and testing conditions. The dataset is then split into
training and testing sets and fed into either the CNN or ViT model. Once training is complete,
we evaluate the model’s performance and save the trained model for real-world predictions. The
trained models can then analyze new images and determine whether they are real or fake. The
proposed system follows a structured pipeline, as illustrated in the system architecture diagram,
which includes both the generation and detection phases, ensuring a robust and efficient deepfake
detection approach (See Figure 1).

Figure 1.

3.2 Deep Convolutional GAN (DCGAN) Development

The Deep Convolutional Generative Adversarial Network (DCGAN) is used for generating fake images.
It consists of two main components:

e The Discriminator Model The first step is to define the discriminator model. The model must
take a sample image from our dataset as input and output a classification prediction as to whether
the sample is real or fake. This is a binary classification problem:
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Figure 1: Workflow of the proposed system

1. Inputs: An image with one channel and a resolution of 256 x 256 pixels.

2. Outputs: A binary classification, where the model predicts the likelihood that the input image
is real or fake. The discriminator architecture consists of:

3. Five convolutional layers (Conv2D), each followed by:

(a) LeakyReLU activation (instead of ReLU) to allow better gradient flow.
(b) Batch normalization to stabilize training.
(¢) Dropout layers to prevent overfitting.

4. A final dense layer with a sigmoid activation function, which outputs a probability score.
A final dense layer with a sigmoid activation function, which outputs a probability score. The

model is trained using the binary cross-entropy loss function, with the Adam optimizer (learning
rate = 0.00015, momentum = 0.5) to ensure stability.

¢ The Generator Model The generator is responsible for creating fake images. It takes a la-
tent vector (random noise) as input and transforms it into a realistic image through a series of
upsampling layers.
1. Inputs: A 100-dimensional latent space vector sampled from a Gaussian distribution.

2. Outputs: A three-channel (RGB) image of 256 x 256 pixels with values normalized between
[0,1]. The generator architecture consists of:

3. A Dense layer that expands the latent vector into a lower-resolution feature map.
4. Reshaping and upsampling layers to progressively increase the spatial resolution.
5. Several transposed convolutional layers (Conv2DTranspose), each followed by:

(a) Batch normalization to improve stability.
(b) LeakyReLU activation for non-linearity.

6. A final Conv2D layer with a sigmoid activation function, ensuring the output image values
remain within the valid range.

¢ GAN Model (Combining Generator & Discriminator) Once both the generator and dis-
criminator are defined, they are combined to form a complete GAN model. The training process
follows these steps:
1. The generator creates a batch of fake images from random latent vectors.
2. These fake images are passed to the discriminator, along with real images from the dataset.

3. The discriminator predicts whether each image is real or fake.
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4. Backpropagation is applied, updating both the generator and discriminator weights to improve
their respective performances.

5. This adversarial training continues until the generator produces highly realistic images that
can fool the discriminator.

By iteratively refining the generator and discriminator, the GAN model learns to generate increas-
ingly convincing fake images, which are later used to train the deepfake detection models. A plot
of the model is also created and we can see that the model expects a 100-element point in latent
space as input and will predict a single output classification label.

Generator_input | input:

[(None, 100)] | [(None, 1007]

InputLayer output:

Y

Generator | input:

- (Mone, 100) | (None, 256, 256, 3)
Sequential | output:

A

Descriminator | input:

(None, 256, 256, 3) | (None, 1)

Sequential | output:

Figure 2: Plot of the Composite Generator and Discriminator model in the GAN

3.3 Process Development of DeiT (Data-efficient Image Transformer)

The DeiT (Data-efficient Image Transformer) model is an optimized version of the Vision Transformer
(ViT), designed for efficient training on smaller datasets. Unlike Convolutional Neural Networks (CNNs),
which rely on convolutional layers to extract local features, DeiT leverages the self-attention mechanism
to capture both local and global dependencies within an image. This characteristic enables it to rec-
ognize complex patterns and structural inconsistencies that may indicate deepfake manipulations. The
development process of DeiT follows steps:

e Linear Embedding Layer:

- The input image is split into fixed-size patches (e.g., 16x16 pixels).

- Each patch is flattened and mapped into a high-dimensional feature space through a learned
embedding matrix.

- A learnable classification token is added to the sequence, and positional encodings are introduced
to preserve spatial relationships.

e Transformer Encoder:

The sequence of image patches passes through L identical layers, each containing:

A Multi-Head Self-Attention (MSA) mechanism, which enables the model to analyze relationships
between patches.

A Feed-Forward Network (MLP) that applies non-linear transformations for feature enhancement.

Layer Normalization (LN) and skip connections to stabilize training and improve information
retention.

e Multi-Head Self-Attention (MSA) Mechanism:
- Computes attention between all patches, allowing the model to focus on important regions of the
image.

- Uses Query (Q), Key (K), and Value (V) matrices to determine the weight of each patch in the
final representation. Classification and Output:

- After passing through multiple transformer layers, the classification token is extracted.
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- A fully connected layer is applied to classify the image as real or fake.

DeiT offers a powerful alternative to CNNs for deepfake detection, particularly when dealing with
large datasets. However, due to its reliance on large-scale training data, its performance can be im-
pacted when applied to smaller datasets. In this study, CNN demonstrated higher accuracy on limited
data, while DeiT showed better scalability and generalization potential for future deepfake detection
improvements [19].

4 Experiments and Results

This section describes the implementation process and the experiments conducted to evaluate the pro-
posed deepfake detection model. The implementation consists of dataset preparation, model training,
performance evaluation, and final deployment.

1. Dataset The experimentation of the proposed technique is implemented by using the two datasets
: The first one is the “140k real and fake faces” dataset contains 70k real faces from the Flickr
dataset collected by Nvidia, as well as 70k fake faces sampled from 1 million fake faces (generated
by style GAN) ! . The second is “Real and fake face detection” datasets contain two subfolders
training real and training fake. Training real contains 1081 images and training fake contains 960
images, the total dataset is 2041 images 2

2. Parameter Settings The models were trained using the following hyperparameters:

Table 1: PARAMETER SETTINGS

Model Epochs | Batch size | Activation | Optimizer
CNN 20 64 Sigmoid Adam
DeiT-Tiny 20 32 ReLU Adam

3. Performance Evaluation and Discution The performance evaluation of the CNN and DeiT-
Tiny models was conducted using key metrics such as training accuracy, validation accuracy, train-
ing loss, and validation loss, as summarized in Table II. The results highlight that CNN outper-
formed DeiT-Tiny, especially on the smaller dataset, achieving 94.15% validation accuracy on the
140K dataset and 81.88% on the Real and Fake Face Detection dataset. In contrast, DeiT-Tiny
reached 90.31% and 61.27%, respectively, indicating its difficulty in learning from limited data and
reliance on larger training sets for optimal performance.

Table 2: PERFORMANCE EVALUATION TABLE

Model Dataset Train accuracy | Validation accuracy | Train loss | Validation loss

CNN 140K Real and Fake Faces 97.11 % 94.15% 7.47% 14.50%

CNN Real and Fake Face Detection 94.58% 81.88% 22.72% 43.95%
DeiT-Tiny 140K Real and Fake Faces 90.06% 90.31% 37.20% 37.01%
DeiT-Tiny | Real and Fake Face Detection 85.05% 61.27% 43.89% 68.44%

Figure 4 and 5 illustrate the CNN model’s stability, with smooth loss curves and consistently high
accuracy, confirming its reliability in deepfake detection. Figure 6 and Figure 7 depict the DeiT-Tiny
model’s slower convergence and higher validation loss, suggesting greater training data requirements
for stable results. Despite its generalization potential, DeiT-Tiny struggled with small datasets, whereas
CNN demonstrated robust and reliable performance across both datasets. Overall, these findings confirm

Thttps://www.kaggle.com/datasets/ciplab/real-and-fake-face-detection
2https:/ /www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces
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that CNN is better suited for real-world deepfake detection applications, particularly when dataset
availability is limited. While DeiT-Tiny offers strong generalization, it requires extensive data and
longer training times to match CNN’s performance, emphasizing the need for model selection based on
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Figure 7: DeiT-Tiny Model Performance on 140K Real and Fake Faces Dataset : (a) Loss function, (b)
Accuracy

5 Conclusion

Deepfake technology presents significant challenges in digital security and misinformation prevention,
requiring robust detection mechanisms. This study explored CNN and DeiT-Tiny models for deepfake
detection, demonstrating that CNN achieved higher accuracy and stability, especially on smaller datasets,
while DeiT-Tiny required larger datasets for optimal performance. Despite advancements, deepfake
detection remains complex due to adversarial attacks, dataset biases, and computational constraints.
Future research should focus on real-time detection, improving model robustness, and integrating multi-
modal approaches such as audio and behavioral analysis. This study contributes to enhancing digital
media security, emphasizing the need for continuous advancements in Al-driven detection frameworks to
combat deepfake threats effectively.
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Abstract

The integration of deep learning-based artificial intelligence solutions in hospital environments in-
troduces significant challenges, including data privacy restrictions, limited computational resources,
and constraints related to the quality and simplicity of the models used. In this review, we high-
light the recent advancements in knowledge distillation and dataset distillation as emerging solu-
tions to these challenges in the field of medical imaging. These techniques offer practical benefits
in clinical settings by enabling faster training, reduced model size, improved inference speed, and
enhanced accuracy, while supporting privacy-preserving learning across decentralized systems and
edge devices. Knowledge distillation transfers knowledge from a complex to a simple model, enabling
efficient deployment without high loss in diagnostic performance. Dataset distillation, by contrast,
focuses on synthesizing datasets that match the pretrained model on real data, reducing data storage
requirements. Together, these methods improve learning efficiency, model accuracy, and resource op-
timization in hospital workflows. However, their integration into medical environments also presents
limitations. Challenges such as pipeline complexity, scalability issues, and performance inconsistency
across architectures or high-resolution tasks still persist. Overall, this review provides a comprehen-
sive overview of potential and limitations of these two types of distillations in healthcare, offering
insights into how these methods can support more scalable, accurate, and privacy-aware Al solutions
for medical imaging.

Keywords: Healthcare, medical imaging, deep learning, knowledge distillation, dataset distilla-
tion, data privacy.

1 Introduction

Artificial intelligence (AI), and deep learning in particular, has become increasingly crucial in medical
imaging, offering significant improvements in diagnostic accuracy, efficiency, and decision support sys-
tems. From radiology to pathology, deep learning models have demonstrated capabilities that rival or
exceed human experts in specific tasks. However, deploying these powerful models in real-world hospital
settings presents significant challenges. The clinical environment presents challenges, including stringent
data privacy, limited computational resources in edge settings, and the practical need for real-time or
near-real-time inference. These constraints pose significant challenges to the adoption of conventional,
large-scale deep learning models, which are often data-intensive, resource-requirement. To address these
limitations, two emerging strategies have gained traction in the research community: Knowledge Distil-
lation (KD) and Dataset Distillation (DD). These techniques aim to retain the performance benefits of
deep learning while reducing the computational and data demands that often hinder clinical deployment.
Knowledge distillation works by transferring knowledge from a large, complex model (the ”teacher”) to
a smaller, more efficient one (the ”student”), preserving accuracy while improving speed and reducing
resource usage. Dataset distillation, on the other hand, generates compact synthetic datasets that can
replicate the behavior of real data, reducing storage needs and enabling faster training cycles and deploy-
ment settings. In this review, we provide a comprehensive overview of both KD and DD techniques in
the context of medical imaging, with a particular focus on their application to brain MRI-based disease
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diagnosis. We explore the methodological foundations of these approaches, analyze recent advancements,
and examine their limitations in clinical settings. Through comparative studies, we highlight how various
KD strategies, such as soft label supervision, intermediate feature transfer, dual-stream learning, and
attention-based mechanisms, enable the compression of large teacher models into lightweight student
models without significant loss in performance. In parallel, DD methods have demonstrated the ability
to achieve competitive results across a range of tasks, including COVID-19 detection from chest X-
rays, Alzheimer’s classification from MRI scans, and skin lesion analysis, all while significantly reducing
dataset size and training requirements. By analyzing the performance, benefits, and trade-offs of both
KD and DD, this review offers insights into how these emerging techniques can support the development
of more scalable, efficient, and privacy-aware Al systems in healthcare.

2 Knowledge distillation

Pour améliorer le diagnostic des anomalies sur les IRM cérébrales, plusieurs études exploitent la dis-
tillation de connaissances (Knowledge Distillation, KD) en transférant les connaissances d’un modele
enseignant complexe vers un modele étudiant plus léger, afin de maintenir une haute précision diagnos-
tique tout en réduisant la consommation de mémoire et le temps d’inférence. Par exemple, I’approche
proposée dans [1], utilisant un ensemble de 357 images IRM, a atteint une précision impressionnante
de 98,10 %. FM-LiteLearn, présenté dans [23], integre les images afin d’améliorer la représentation des
caractéristiques tumorales ; une stratégie de distillation multi-enseignants (MT-KD) y est appliquée pour
optimiser les performances. Evalué sur le jeu de données BT_NAGMNS5, le modele proposé T-ResNet18
a obtenu une amélioration de 9,4 % de la précision de classification. Une autre étude, présentée dans
[16], utilise 'auto-distillation (Class Activation Self-Distillation, stratégie CASD) pour améliorer la clas-
sification multi-modale du Gliome en affinant ’extraction des caractéristiques au sein d’un réseau a flux
unique. Figure 1 shows Knowledge Distillation Framework: Soft Label Supervision from Teacher to
Student.

distilled| knowledge
Student Model .
hard labels

y
ol ‘tobe trained' predictions < truelabel

‘ ‘e Training data

i Student

Figure 1: Knowledge Distillation Framework: Soft Label Supervision from Teacher to Student

Addressing data insufficiency in 3D brain imaging, recent studies [17, 26, 8] have demonstrated the
effectiveness of knowledge distillation (KD) in enhancing model performance with limited data. For
instance, in [17], KD improves performance by transferring knowledge from a powerful teacher model to
a lightweight student model that combines a convolutional neural network (CNN) for feature extraction
with a long short-term memory (LSTM) network to capture inter-slice correlations. This approach
achieved an accuracy of 85.96%, representing a 3.83% improvement in Alzheimer’s disease detection
using 3D MRI scans.

To improve Al transparency in medical image analysis, another study [8] introduces Knowledge
Distillation and Feature Map Visualization (KD-FMV), where a DenseNet121 teacher model is trained
and transfers its knowledge to a lightweight student model. The method balances hard and soft losses for
brain tumor classification: the teacher model achieved 98.77% accuracy, while the best student model
reached 97.48% with a lower loss of 0.0944. In Alzheimer’s classification, the teacher model attained
99.38% accuracy, with the best student model achieving 99.46% and a lower loss of 0.0194.

On the other hand, the Confidence Regularized Knowledge Distillation (CReg-KD) framework [26]
achieved the highest accuracy across multiple architectures: ResNet-18 (~94%), ResNet-50 (~93%),
DenseNet-121 (~93%), and InceptionV3 (~94%), consistently outperforming other distillation methods
as the sample size decreased.

To address privacy concerns in brain tumor MRI analysis, FedBrain-Distill [7] and FedSPD [24] adopt
a federated learning approach combined with knowledge distillation (KD). Results from the Figshare
brain tumor dataset (see Figure 2 ) show that, with two teacher models, FedBrain-Distill achieves over
93% accuracy within just 10 communication rounds, whereas traditional federated learning (FL) methods
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require 100 rounds to reach similar performance. When using five teachers, the model reaches nearly
94% accuracy, matching state-of-the-art results.

FedSPD, on the other hand, employs similarity-preserving knowledge distillation to align feature
representations across clients. It outperforms traditional FL methods by 78.41% and personalized FL
(PFL) methods by 10.55% in non-IID settings. Moreover, it enhances efficiency by reducing training
time by 67.25% and model size by 49.34%.

Ghoma

Pituitary Tumor

Menungioma

Figure 2: Brain Tumor MRI images from FiGSHARE dataset

Other studies, such as [20], utilize multiple teacher models and a lightweight student model incor-
porating feature aggregation, attention mechanisms, and a custom distillation loss function to improve
learning efficiency while maintaining high accuracy. In [20], teacher models are trained on different
datasets, while the student learns from both labeled and unlabeled data. Experimental results on the
ACDC dataset and various source datasets demonstrate the method’s effectiveness. For instance, on
ACDC, the model achieved 89.40% accuracy with only 32 labeled samples, which improved to 95.85%
with 64 labeled samples. Likewise, the F1-score increased from 89.42% to 95.74% with more labeled data
[19].

Recently, vision transformers (ViTs) have been increasingly applied in conjunction with distillation
techniques to transfer both intermediate features and soft labels from ViTs to smaller student models,
mitigating the data inefficiency and computational complexity of ViT's in brain tumor MRI classification.
LCDEIT (Linear-Complexity Data-Efficient Image Transformer) [6] introduces a custom gated-pooled
CNN teacher and an external attention mechanism to improve training efficiency and reduce dependency
on large datasets. This strategy achieved high classification performance: 98.11% accuracy and 97.86%
Fl-score on the Figshare dataset, and 93.69% accuracy and 93.68% F1-score on the BraTS-21 dataset.

Hybrid models [5, 3] further enhance feature representation while significantly reducing model com-
plexity in the distillation process. The Data-Efficient Knowledge Distillation (HDKD) approach [5]
employs a CNN-based teacher model that distills both logit- and feature-level knowledge into a hy-
brid student architecture combining CNN and ViT components with a lightweight convolutional block
(MBCSA). This method achieved 92.9% accuracy using only 200 images.

Finally, Quantum ViTs (QViTs) [3] leverage KD to pretrain quantum vision transformer models from
high-quality teachers, thereby reinforcing the strengths of QViTs. On the OASIS dataset for Alzheimer’s
disease classification, QViT_28 (AUC: 0.812, ACC: 0.693) closely rivals ViT_28 (AUC: 0.822, ACC: 0.701)
while maintaining quantum efficiency. Furthermore, QViT_224 (AUC: 0.785, ACC: 0.678) outperforms
ViT_ 224 (AUC: 0.603, ACC: 0.400).

On Alzheimer’s disease classification tasks, the study [22] employed a Res-Transformer as the teacher
model and a ResU-Net as the student model to enhance training stability and optimize skip connections
for improved image reconstruction. Through knowledge distillation, this approach achieved an accuracy
of 96.9% and a gain of 7.2% in performance.

In another study [4], a Residual Temporal Attention Block (RTAB) was introduced to distill temporal
dependencies in a dual-stream vision transformer (DS-ViT). The method transfers knowledge from a
segmentation model to a classification model by computing residuals between MRI scans over time,
guiding the model to focus on subtle cues related to disease progression. This approach achieved 89.9%
accuracy and 91.7% recall on the MIRIAD Alzheimer’s dataset.

Additionally, the study in [10] explored the feasibility of using vision transformers (ViTs) under low-
data constraints for Alzheimer’s diagnosis. The proposed method reached 79.7% accuracy on the ADNI1
dataset and 82.0% on the ADNI2 dataset, significantly outperforming training without distillation, which
achieved only 67.7% and 69.8% accuracy respectively.

3 Dataset distillation

Dataset distillation (DD) is a technique that compresses the knowledge of a large dataset into a small
set of synthetic images, enabling models to learn effectively while significantly reducing data size and
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Reference Teacher Model | Student Model | Distillation Performance
(T) (S) Strategy
[8] KD-FMV DenseNet121 Custom CNN Feature matching | 98.77% (T), 97.48% (S)
(27.37 MB) NB params: 37TM | + soft targets
5 teachers:
94.38% (IID)(S)
[7] FedBrain- | 2 or 5 decen- | ConvNet Federated soft dis- 93.34% (non-IID) (8)

Distill

tralized VGGI16
teachers

NB params:
~138M x (2/5)

94,986 params

tillation

2 teachers:
93.60% (IID)(S)
92.36% (non-IID) (S)

Figshare
Acc 98.11 (T),
Acc :94.33 (S)
BraT$S

[6]LCDEIiT Gated pooled | Transformer DEiT (Student) | Acc 93.69 (T),
CNN (Figshare - | D1: ~338,502 + Gated-Pooled | Acc :87.96 (S)
3 classes) D2: ~33,632 CNN (Teacher) + | LCDEIiT
NB params: External Atten- | Figshare: Acc:98.11
90795 tion BraTS§S: Acc :93.69
BraTS-21 (4
classes): 90828

[23] MT-KD Multiple large | T-ResNet18 Multi-teachers +9.4% acc improvement
models NB params: | (ensemble distilla-
NB params: N.A 11.7M tion)
ResNet-18 Baseline: Acc 87.05
(NB: ~11.7M) — KD: 92.354+2.10
ResNet-50 ResNet-18, Baseline: Acc 88.45
NB: ~25.6M ResNet-50, e — KD: 92.02+2.48

[26] CReg-KD ]()enseNet-121) DenseNet-121, Self-distillation Baseline: Acc 86.01
(NB: ~7.98M) InceptionV3 (same model |1 ny. 92.36+2.27
InceptionV3 used) Baseline: Acc 90.21
(NB: ~23.9M) — KD: 94.05+1.20

Table 1: Performance Comparison of Knowledge Distillation Methods on Brain MRI Images

preserving privacy (see Figure 4). The survey presented in [11] categorizes DD methods into two main
frameworks: the Meta-Learning Framework, which optimizes synthetic data using methods such as Back-
propagation Through Time (e.g., DD, LD, GTN) and Kernel Ridge Regression (e.g., KIP, FRePo); and
the Data Matching Framework, which aligns properties between real and synthetic data through Gra-
dient Match (e.g., DC, IDC), Trajectory Match (e.g., MTT, TESLA), and Distribution Match (e.g.,
DM, KFS, IDM). The survey concludes that Data Matching methods, particularly recent factorized ap-
proaches such as IDC, RTP, and KFS, generally outperform Meta-Learning methods on complex datasets
such as CIFAR-100 and Tiny ImageNet. Alternatively, a more recent survey [27] proposes a different
taxonomy based on four dimensions: optimization objective, network update fashion, synthetic data
parameterization, and label learning strategy. It classifies DD methods into Performance Matching (e.g.,
DD, FRePo), Distribution Matching (e.g., DM, IDC), and Parameter Matching (e.g., MTT, HaBa).
This taxonomy highlights key differences in update strategies, label types, and parameterization styles,
showing that modern methods such as FRePo and DSA offer superior scalability and accuracy across
both simple and complex datasets. Taken together, both surveys suggest that modern, factorized, and
optimization-efficient DD methods—particularly those based on Data Matching—are more effective and
scalable, marking a clear evolution in the field.

In dataset distillation (DD) for natural images, the structure and patterns of the original data are
often preserved. Typically, the distilled dataset is initialized using real images or slightly modified ver-
sions, allowing the synthetic data to retain key visual features from the original dataset. This helps
maintain important textures, shapes, and object structures, enabling models to learn from a smaller
subset without significant loss of information. Recent advances in DD have introduced a variety of
innovative strategies to improve efficiency, robustness, privacy, and scalability. The Importance-Aware
Adaptive Dataset Distillation (IADD) [15] enhances performance by assigning importance-aware weights
to network parameters during training, leading to state-of-the-art results on CIFAR-10, CIFAR-100, and
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Figure 3: Brain MRI Samples of Alzheimer’s Lesions from the OASIS-2 Dataset

Ref Teacher Model (T) Student Model (S) | Distillation Dataset | Performance
Strategy
8] Dens.eNet121 Custom. CNN Logit matching | 3D MRI
params: 27.37 MB params: 37TM + spatial feature ACC: 99.46% (S)
map analysis ACC: 99.38% (T)
ACC:0.965
TinyViT Quantum ViT AUC: 0.983 (T
3] params: ~5M (QVLT) Soft label KD | OASIS ACC: 0.656 :
with — quantum- AUC: 0.763(S)
classical hybrid
learning
ResTransformer ResU-Net ACC: N.A (T)
[22] (U-Net based) - Intermediate fea- | Private ACC: 96.9% (S)
NB params: ~40M-60M params: ~TM-15M tures + soft la- +7.2% acc
bels
ACC: N.A (T)
3D _Unet-Model DS-VLT ADAPT_ACC:
[4] (EastSurfer) ) Dual-stream MIRIAD | 0.903 (baseline)
NB params: ~24M params: ~L0-HAM i tion (seg- DS-ViT_(S)
mentation to ACC: 0.941
classification)
3D ResNet-152 Lightweight o ADNI1
[10] i Transformer Distillation
params: ~256M params: N.A token with self- ADNI2 ADNII:
attention ACC : 84.63% (T)
ACC : 79.7%(S)
ADNI2:
ACC 82.51% (T)
ACC: 82.0%(S)

Table 2: Performance Comparison of KD Methods on Alzheimer MRI Images

Tiny ImageNet. In the domain of robustness, TrustDD [18] introduces Pseudo-Outlier Exposure (POE)
to distill datasets that are more resistant to out-of-distribution (OOD) inputs, achieving top AUROC
and AUPR-OUT scores on CIFAR-10. The method proposed in [29] improves training efficiency through
early-stage model snapshots and parameter perturbation, enabling up to 20x speedups without compro-
mising accuracy. Privacy concerns are addressed in SFDD [2], which applies a local differential privacy
mechanism (LDPO-RLD) in a decentralized setting, protecting gradient updates while improving model
performance, with an 8.94% accuracy gain on the GTSRB dataset. Study [30] proposes a diffusion-based
patch selection strategy for synthetic data generation, introducing a novel DD method that uses a frozen
diffusion model as a teacher to select informative image patches from real data, rather than generating
synthetic images. By leveraging the model’s learned data distribution and text-guided semantics, it
ranks and clusters patches to build a compact yet effective distilled dataset. A student model trained
on this curated set learns efficiently, preserving the original data’s feature distribution and improving
semantic alignment compared to prior approaches. This strategy achieved 70.0% top-1 accuracy on
ImageNet-1K. Finally, Distributional Dataset Distillation (DDD) is introduced in [21], a novel approach
addressing inefficiencies in prototype-based DD methods, particularly the hidden storage costs of explicit
label encoding. Rather than distilling into individual samples, DDD represents each class using com-
pact per-class statistical distributions, coupled with a decoder to reconstruct representative data. This
formulation allows significantly more memory-efficient distillation. To enhance scalability, the authors
propose a federated distillation strategy by splitting the dataset into subsets, distilling them in parallel
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Figure 4: Dataset Distillation Framework: performance matching

via specialized sub-task models, and merging the results. Extensive experiments demonstrate that DDD
achieves state-of-the-art performance, including a +6.9% accuracy improvement on ImageNet-1K under
tight storage constraints (equivalent to just two images per class), highlighting both its efficiency and
scalability. Collectively, these contributions mark significant progress, as illustrated in Table 3, making
dataset distillation more accurate, scalable, privacy-preserving, and efficient across diverse domains and
challenges.

Ref Dataset Classes | Size IPC | Model(s) Distilled Perfor- | Original Perfor-
mance mance
[15] CIFAR-10 10 60000 50 ConvNetD3 ACC = 72.6% ACC=84.8+0.1%
[15] CIFAR-100 100 60000 50 ConvNetD3 ACC = 49.0% ACC =56.2+0.3%
10 60000 10 ConvNet AUROC= 78.64% AUROC= 65.79%
CIFAR-10 100 60000 10 ConvNet AUROC: 82.04% AUROC= 49.94%
[18] ConvNet ACC = 60.22% ACC = 60.55%
10 60000 50 AlexNet ACC = 58.36% ACC = 56.23%
VGG ACC = 56.29% ACC = 55.02%
[18] CIFAR-100 100 60000 10 ResNet ACC = 51.25% ACC = 50.00%
[29] ImageNet-10 10 ~13,000 10 | ResNetAP-10 ACC = 74.6% SpeedUp xX4.57,
Acc gain x1.01
[29] ImageNet-100 100 ~133,000 10 | ResNetAP-10 ACC = 48.4% SpeedUp x4.76,
Acc gain x1.04
[30] ImageNet-1K 1000 “1.28 M 50/100 VLT-B to ResNet-18 NA
IPC 50: ACC=65.4 &+ 0.7%
IPC 100:ACC=70.0 + 0.3%
[21] | ImageNet-1K 1000 “1.28 M 10 | ConvNet ACC=30.5% +6.9% gain over
baseline
2] GTSRB 43 39,27 1 ConvNet ACC=32.13% +0.19% over
centralized DD
(31.94%)
43 39,27 10 ConvNet ACC=65.38% ACC=66.55%

Table 3: Performance Comparison of Dataset Distillation Methods on Natural Images (IPC: Image
Number Per Class)

However, in medical imaging, privacy concerns require a different approach. Instead of initializing
distilled data from real medical images, the process begins with completely random patterns, often gen-
erated using Gaussian noise or other noise-based strategies. These synthetic samples are then optimized
through dataset distillation techniques to replicate the training behavior of real medical images while
ensuring that no identifiable structures or sensitive patient information are retained. This strategy en-
ables privacy-preserving model training while maintaining the effectiveness of the distilled datasets for
downstream tasks.

In the medical imaging domain, several recent DD methods have been proposed to enable secure, effi-
cient, and privacy-preserving model training. For instance, UniCompress [25] applies dataset distillation
to the domain of medical image compression, using feature alignment and cross-attention in a knowl-
edge distillation (KD) pipeline to transfer information from a teacher to a lightweight student model,
achieving 4-5x faster compression with top-tier PSNR and SSIM scores. The Anonymous Gastric Image
Distillation method [12] uses a gradient-based approach that achieves a harmonic mean (HM) of 0.877,
outperforming ResNet-18 trained on up to 3,000 real images. Similarly, soft-label dataset distillation
(SLDD) [13] also achieves an HM of 0.877, surpassing both traditional hard-label distillation methods
and large-scale ResNet-18 models. The study concludes that the minimum number of compressed images
required is correlated with the number of model parameters.
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For cross-hospital sharing of COVID-19 chest X-ray data, another study [14] achieves 82.7% accuracy
using only 20 images per class, closely approaching the 88.9% accuracy obtained when training on the
full dataset. MedSynth [9] introduces a condensation framework that uses an attention-based generator
fine-tuned with a Vision Transformer (ViT) to align synthetic and real data logits, achieving up to 97.11%
accuracy and 96.27% AUC on Alzheimer’s and ISIC 2019 datasets.

Further advancing medical dataset distillation, a progressive trajectory matching method [28] applies
multi-stage alignment of model parameters trained on synthetic versus real data, combined with dy-
namic overlap mitigation and scheduled retraining. This approach achieves state-of-the-art accuracy on
high-resolution datasets, including 66.18% on COVID19-CXR, 65.37% on BREAST-ULS, and 51.19%
on SKIN-HAM, using only two images per class, outperforming all previously reported distillation tech-
niques.

Ref | Dataset Size D.Size / IPC | Model Distilled Performance Baseline Per-
formance
201 ~512x ACC = 0.9811 (Liver) Teacher models
[25] CT Scans 3D patient compression ResNet-50 ACC = 0.9812 (Colon) (no DD):
patients ratio ACC = 0.9758 (Spleen) slower by 4-5x
s 815 Sensitivity = 0.886 o
[12] Gastric X-ray patients 1 ResNet-18 Specificity = 0.869 +5% HM
GoogLeNet HM = 0.882
[13] Gastric Xera 815 1 ResNet-18 HM = 0.869 Cross-model
Y patients AlexNet HM = 0.836 comparison
VGG16 HM = 0.916
COVID-19 _ 88.9%
[14] Chest X-ray 21 165 20 ConvNet Accuracy = 82.7% (full dataset)
zheimer’s, 5 = 11% ~
9] | Alzheimer’ 5 121 50 DCGAN | ACC = 97.11% R T
ISIC 2019 samples
2/10 IPC 2: ACC = 66.18% =+ 0.02 o
[28] | COVID19-CXR 21 165 ConvNet IPC 10- ACC — 69.65% & 0.01 | 90-22% % 0.01
28] BREAST-ULS 780 2/10 ConvNet IPC 2: ACC = 65.37% + 0.02 74.00% + 0.07
IPC 10: ACC =68.90% =+ 0.01 o
SKIN-HAM 10 015 2/10 ConvNet IPC 2: ACC = 51.19% + 0.02 70.17% =+ 0.02

Table 4: Performance Comparison of DD Methods on Medical Images (IPC: Image Number Per Class)

Future research in dataset distillation should focus on advanced techniques like GANs, VAEs, and
diffusion models to enhance data fidelity and privacy-preserving data sharing which is crucial in sensitive
domains like medical imaging. Advancements in methods like MedSynth and DDD should emphasize
scalability, generalization, and robustness.

4 Discussion

Knowledge distillation (KD) in brain MRI imaging has emerged as a powerful technique not only for
compressing large models into smaller, more efficient ones but also for addressing challenges such as
privacy, diversity, and adaptability to specific target tasks. When integrated with approaches like fed-
erated learning (e.g., FedBrain-Distill [5]), it enables model training without directly sharing sensitive
data, thereby enhancing privacy. FedBrain-Distill focuses on privacy and communication efficiency in
federated settings, where multiple decentralized teacher models produce soft labels (via temperature-
scaled softmax) for a central lightweight student, resulting in strong generalization performance without
exchanging data or model weights (94.38% IID, 93.34% non-IID). In contrast, deep models such as
DenseNet121, used in [6], serve as rich teachers to guide a custom CNN student via both soft targets and
feature representation matching, achieving high performance (98.77% teacher, 97.48% student) despite
the student having more parameters—highlighting computational efficiency and inference speed as more
critical than model size.

Furthermore, recent studies have expanded the scope of KD by exploring the use of more complex or
“heavy” teacher models to optimize performance, efficiency, and model architectures, adapting the meth-
ods for specific applications and deployment environments. For instance, the study in [10] replaces heavy
teacher models with a lightweight gated CNN and uses attention-guided and self-supervised distillation
to train a compact transformer-based LCDEIT student (approximately 338K parameters), achieving
competitive accuracy (up to 98.11%) with far lower complexity. Collectively, these studies demonstrate
how KD can optimize performance, efficiency, privacy, and architectural design depending on the specific
use case.

In the context of Alzheimer’s disease datasets, several studies have shown the power of KD in re-
ducing model complexity without compromising—and in some cases, even enhancing—student model
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performance. For example, the work in [6] uses KD through logit matching and feature map analysis,
allowing a custom 5-layer CNN to approach the accuracy of a DenseNet121 teacher (99.38% vs. 99.46%)
while requiring nearly ten times fewer operations, demonstrating how lightweight models can achieve
comparable results. In [15], knowledge transfer from a Res-Transformer to a lightweight ResU-Net stu-
dent results in a 7.2% accuracy increase and an estimated 5-10x reduction in computational complexity,
emphasizing the benefits of distilling both soft labels and intermediate features.

Taking a novel direction, study [27] explores the integration of KD with quantum neural networks,
where a TinyViT teacher distills knowledge into a QViT student model. This approach achieves up to
80x compression while maintaining strong classification performance (AUC up to 0.812), highlighting
KD’s potential in hybrid quantum-classical learning systems. Similarly, KD can go beyond model-
to-model transfer for the same task. In [18], a dual-stream KD strategy is employed to bridge two
distinct tasks—segmentation and classification—Dby distilling structural knowledge from a segmentation
model into a DS-ViT classifier. This cross-task distillation leads to notable improvements in classification
accuracy (0.899) and recall (0.917), while also reducing model size by approximately 5x, showcasing KD’s
ability to enable transfer learning across functionally different but related domains. Another approach,
proposed in [29], introduces a distillation token mechanism that transfers knowledge from a large 3D
ResNet-152 to a significantly smaller transformer-based student. Despite achieving 9.7x compression,
the performance gain is modest ( 0.1%) and computational costs remain high due to the heavy teacher
model. These studies illustrate the broad utility of KD—mnot only as a model compression method, but
also as a bridge across architectures, learning paradigms, and deployment constraints—especially within
the sensitive and resource-limited field of medical imaging.

Inspired by the principles of KD, a related and increasingly powerful technique known as dataset
distillation (DD) has emerged. Unlike KD, which transfers knowledge from one model to another, DD
transfers knowledge from real data—or a model trained on it—into a much smaller, synthetic dataset. In
this paradigm, the teacher is not a model but the original data distribution itself, and the student (often
with the same architecture as the teacher) is trained exclusively on the distilled dataset. This method
aims to match the performance of models trained on full datasets using only a synthesized subset derived
from the original data. Recent studies have further developed this concept by evaluating multiple model
architectures during the distillation process, thereby improving the generalizability of the distilled data
across tasks and learners.

Among its key advantages, DD significantly accelerates training times and reduces storage require-
ments, making it especially effective for simpler datasets such as CIFAR-10 and GTSRB. For instance,
studies show that with just 10 to 50 images per class (IPC), models trained on distilled CIFAR-10 can
achieve up to 72.6% accuracy compared to 84.8% on the full dataset, while GTSRB achieves 65.38%
using IPC 10 versus 66.55% with full data. This makes DD ideal for edge deployment or federated
learning setups with strict data transmission and storage limits. Additionally, DD can deliver notable
speedups (e.g., 4.5x on ImageNet subsets) and even occasional performance improvements over tradi-
tional distributed training.

However, these advantages come with significant limitations. As dataset complexity increases (e.g.,
CIFAR-100, ImageNet-100, ImageNet-1K), the performance gap between models trained on distilled
versus full datasets becomes substantial. For example, on ImageNet-1K with 10 IPC, accuracy drops
to 30.5%, although increasing to 100 IPC improves it to 70.0%. These datasets contain high inter-class
variability and complex patterns that are difficult to capture with limited synthetic data. Moreover, the
success of DD is highly architecture-dependent: while simple networks like AlexNet and VGG retain
relatively high AUC and accuracy on distilled data, more complex models like ResNet and ViT are more
sensitive to the quality and diversity of synthetic samples. To mitigate this, some methods introduce
teacher-student mechanisms during DD, improving results at the cost of greater pipeline complexity.

DD has shown great promise in medical imaging, achieving significant data reduction while preserv-
ing performance, particularly with ConvNet and ResNet architectures. Studies indicate that even under
extremely low IPC settings, models can maintain strong performance on tasks such as CT scan segmen-
tation and chest X-ray classification. However, a major challenge to generalizability remains: distilled
data often overfit to the model architecture they were generated for, reducing reusability across other
architectures. Furthermore, on more diverse or clinically detailed datasets, performance tends to decline,
and important but rare features may be lost. Most research has focused on convolutional architectures,
limiting exploration of modern transformer-based models. Additionally, the interpretability and clinical
reliability of synthetic data remain open concerns in real-world medical applications.
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5 Conclusion

Knowledge and dataset distillation are emerging as impactful techniques in medical imaging, particularly
in hospital settings where data privacy, sharing restrictions, and limited computational resources are key
concerns. KD enables the compression of large models into efficient, high-performing versions, making it
ideal for decentralized systems, edge devices, and federated learning environments where raw data can-
not be shared. DD complements this by creating compact synthetic datasets that capture the essential
patterns of full datasets, enabling training without exposing sensitive medical data. These approaches
support privacy-preserving and resource-efficient AI deployment but face notable challenges. KD often
involves complex training pipelines with teacher-student models, while DD may struggle to retain diag-
nostic fidelity in high-resolution or fine-grained tasks. Both methods also show performance variability
across different architectures, highlighting the need for careful tuning and optimization. Looking forward,
integrating generative adversarial networks (GANSs) into dataset distillation offers a promising direction.
GANS can improve the realism and diversity of synthetic data, helping to close the performance gap be-
tween distilled and full datasets. With continued research, KD and DD have strong potential to support
scalable, accurate, and privacy-aware Al systems in clinical environments.
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Abstract

This paper presents a novel method for compressing Convolutional Neural Networks (CNNs)
to enable efficient deployment on low-capacity devices. The proposed approach combines neural
network pruning with reinforcement learning (RL) and graph embedding. Each network is repre-
sented as a computational graph, and Graph Convolutional Networks (GCNs) are utilized to learn
graph-level embeddings that inform pruning decisions. By applying Proximal Policy Optimization
(PPO), we automate the selection of layer-wise pruning ratios, eliminating the need for manual
tuning. Experiments on ResNet-34 and VGG-19, trained on the CIFAR-10 dataset, demonstrate
that our method achieves up to 80% compression while maintaining or improving model accuracy
through post-pruning rewinding. We evaluated both structured and unstructured pruning strategies,
analyzing the trade-offs in accuracy, FLOPs, parameter count, and inference time.

Keywords: Model Compression, Deep Neural Networks, Graph Embedding, Reinforcement
Learning, Neural Networks, Pruning, Convolutional Neural Networks, CNN Acceleration.

1 Introduction

The deployment of convolutional neural networks (CNN) in low-capacity devices, such as smartphones
and ToT devices [1], presents significant challenges due to their high computational demands and large
memory requirements. These constraints limit the use of CNNs in real-time applications, such as facial
recognition or object detection, especially in environments where cloud resources are unavailable or
introduce unacceptable latency.

Model compression techniques, particularly neural network pruning, have effectively overcome these
challenges. By reducing the complexity of CNNs, pruning reduces computational cost and memory usage,
enabling deployment on resource-constrained devices without significant performance loss. However,
determining the optimal pruning strategy for each layer remains challenging, as it often requires manual
tuning and is sensitive to the network structure.

We introduce a method that combines neural network pruning with reinforcement learning (RL) and
graph embeddings to automate the compression process. This approach reduces the need for manual
tuning while preserving accuracy and efficiency, key requirements for deploying CNNs on low-capacity
devices.

2 Related Work

Model compression techniques can be categorized into several approaches, including knowledge distilla-
tion, quantization, factorization, and pruning [2]. Among these, pruning offers a direct and effective way
to reduce model complexity by eliminating redundant parameters, often with minimal loss in accuracy.
It is particularly attractive because it can be applied post-training, preserves the original architecture,
and complements other techniques such as quantization.

The theoretical basis for pruning is strengthened by the Lottery Ticket Hypothesis (LTH) [3], which
proposes that overparameterized networks contain smaller, trainable subnetworks—referred to as “win-
ning tickets”—capable of reaching comparable accuracy to the full model when trained in isolation. As
Frankle and Carbin describe:
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“A randomly-initialized, dense neural network contains a subnetwork that is initialized such
that—when trained in isolation—it can match the test accuracy of the original network after
training for at most the same number of iterations.” [3]

This insight highlights the inherent redundancy in large neural networks and motivates pruning
as a principled strategy for model compression. However, identifying such subnetworks remains non-
trivial, especially in deeper architectures, where brute-force or heuristic pruning methods become com-
putationally prohibitive. This challenge underscores the need for more scalable and intelligent pruning
approaches—such as those guided by reinforcement learning and graph-based representations.

In practice, pruning techniques are generally classified into two categories: unstructured and struc-
tured. Unstructured pruning removes individual weights, often resulting in sparse models with high
compression rates. However, these irregular patterns typically require specialized hardware for efficient
execution. Structured pruning, in contrast, removes entire filters, channels, or blocks, producing smaller,
dense models that are more compatible with conventional hardware and easier to deploy [4, 5]. De-
spite their practical advantages, traditional pruning methods often rely on fixed heuristics to determine
layer-wise pruning ratios, which may not generalize well across architectures or datasets.

To overcome these limitations, recent work has turned to reinforcement learning (RL) to automate
the pruning process. Notable examples include ABCPruner [6] and CCPruner [7], which use RL agents
to learn pruning policies that balance model efficiency and accuracy. While these methods have shown
promise, they often treat layers independently and fail to account for the structural dependencies across
the network.

Our work addresses this gap by modeling the neural network as a computational graph, enabling a
more holistic view of the architecture. By leveraging graph embeddings, we capture global structural
information that informs pruning decisions, leading to more coherent and scalable model compression.

3 Building a Computational Graph from a Neural Network
As illustrated in Figure 1, our compression pipeline consists of the following stages:

1. Initialization: The process begins with the initialization of a deep neural network, either from
scratch or using a pretrained model. At this stage, the initial weight values are preserved to enable
potential rewinding after pruning, as part of the iterative compression strategy.

2. Training: The initialized model is trained on the target task until it achieves satisfactory perfor-
mance. This yields a fully trained network that serves as the baseline for subsequent pruning.

3. Pruning: Reinforcement learning is employed to determine the optimal pruning rates for each
layer. A Graph Convolutional Network (GCN) is used to encode the computational graph of the
trained model into a latent state representation. This representation is then processed by a policy
network, which generates pruning decisions. These decisions are evaluated based on a reward signal
reflecting the trade-off between compression and model accuracy.

4. Rewinding: After pruning, the model is reverted to its initial weights saved during the initial-
ization phase. This step, known as rewinding, facilitates the identification of subnetworks—often
referred to as “lottery tickets”—that can be retrained from the original initialization to achieve
strong performance.

5. Retraining: The selected subnetwork is retrained from its original initialization. The objective
is to recover the model’s performance to a level comparable to the original unpruned network,
thereby achieving an efficient and accurate compressed model.
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Figure 1: Pipeline illustrating CNN pruning guided by reinforcement learning, using graph embeddings
to encode architectural information.

The model automates the pruning phase, removing the need for human input. A DNN’s compu-
tational graph maps operations like addition and multiplication during this phase to produce outputs.
Nodes perform computations, while edges guide the data flow through the network’s layers [8].

Algorithm 1 outlines the procedure for constructing a subgraph for a single layer, which involves
initializing input and output nodes and creating edges to represent the connections between them.

Algorithm 1: Subgraph Construction for a CNN Layer

Data: n: Number of input channels
Input: N: Number of output channels
E: List of edges (empty for the first layer)
Result: E: Updated list of edges
Output: Input node of the next layer
1 Output < Input + N + 1;
2 for i < 1to N do

3 E + Insert(E, (Input, Input + 1)) ; // Insert edge effnput]
4 E < Insert(E, (Input + i, Output)) ; // Insert edge effutput]

4 Graph Embedding

Graph embedding transforms structured data into low-dimensional vector representations, facilitating
efficient learning and decision-making in downstream tasks. In this work, we represent convolutional neu-
ral networks (CNNs) as computational graphs, where nodes correspond to layers or operations and edges
capture the flow of information. This graph-based formulation enables the use of Graph Convolutional
Networks (GCNs) to encode the topological and functional properties of the CNN architecture.

By leveraging GCNs, we obtain a fixed-size embedding of the network that preserves both struc-
tural dependencies and feature hierarchies, which are essential for informing pruning decisions [9]. This
compact representation is then passed to the reinforcement learning (RL) agent, which uses it to se-
lect optimal pruning strategies. The use of GCNs ensures that similar CNN architectures yield similar
embeddings, improving the generalization of the pruning policy across different models.

As input to the GCN, we define the node features using the number of nodes (|V|) and their attributes
(Fin), along with edge indices (2, |€|), and output node features (|V], Foyut). Instead of focusing solely on
individual node embeddings, we aim to compute a holistic representation of the entire graph. To achieve
this, we first apply a GCN encoder that maps the graph G to a set of node embeddings H € RV*?, as
shown in Equation 1:
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H = GCNgpeoder(G) € RV (1)

The resulting node embeddings are then aggregated using a global pooling operation. Specifically,
we use a GlobalMeanPool that computes the average over all node embeddings, producing the final
graph-level embedding g, as defined in Equation 2:

QZ%ZM (2)

In Equation 2, h; denotes the embedding of the i-th node, IV is the total number of nodes in the
graph, and d is the dimensionality of the embedding space. This aggregated representation g captures
the structural and semantic properties of the CNN architecture, and is used as input to the reinforcement
learning agent.

5 Criteria for Choosing the Compression Ratio

Our goal is to optimize convolutional neural networks (CNNs) for deployment on low-capacity devices
by applying structured pruning techniques. This reduces inference time, memory usage, and model size.
To guide pruning, we focus on two key efficiency criteria:

e Model Parameters: Reducing the number of parameters directly decreases the computational
and memory overhead, enhancing the efficiency of the model [10].

e FLOPs (Floating Point Operations): FLOPs quantify the computational effort required per
inference and are especially relevant in CNNs due to weight sharing [11]. Minimizing FLOPs has
a direct impact on inference speed and energy consumption.

FLOPs are calculated per layer type as follows:

e Convolutional Layers:
FLOPs =2 x Co x Cr x K x O (3)

where Cp is the number of output channels, C; is the number of input channels, K is the kernel
size, and O is the number of output elements.

e Fully Connected Layers:
FLOPs=2x1IxO0 (4)

where I and O are the number of input and output units, respectively.

6 Pruning Methods Selection

To enable the deployment of convolutional neural networks (CNNs) on low-capacity devices, it is essential
to reduce their inference time, memory footprint, and overall model size. Pruning—i.e., removing less
important components of the network—is a widely used approach to achieve such compression. In
this work, we evaluate both unstructured and structured pruning techniques for their effectiveness in
compressing CNN architectures.

e Unstructured Pruning: This method eliminates individual weights from convolutional kernels
based on their magnitude or contribution. While it can result in highly sparse models with minimal
impact on accuracy, it often fails to yield practical improvements in inference time or memory
usage. This is largely due to the lack of hardware-level support for irregular sparsity, which limits
the efficiency gains on general-purpose devices.

e Structured Pruning: In contrast, structured pruning removes entire filters, channels, or even
layers. This produces a more compact and regular architecture, leading to measurable reductions
in computation and memory requirements. However, structured pruning carries a higher risk of
accuracy degradation if critical components are pruned without adequate guidance.
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In addition to the pruning strategy itself, the choice of how to reinitialize and retrain the pruned
network plays a crucial role in recovering or maintaining performance [12]. We evaluate the following
post-pruning training approaches:

¢ Rewinding (100%): After pruning, the remaining weights are reset to their initial values recorded
at the start of training. This approach is motivated by the Lottery Ticket Hypothesis, which
suggests that certain subnetworks can achieve competitive performance when trained from their
original initialization.

¢ Random Initialization: As a baseline, we reinitialize the surviving weights with new random
values after pruning. This serves to evaluate whether rewinding provides a significant advantage
over fresh initialization.

e Fine-Tuning: This method retains the final values of the remaining weights and continues training
with a reduced learning rate. The goal is to refine the pruned model without substantially altering
its learned representations. Fine-tuning is commonly used in practice due to its simplicity and
effectiveness.

7 Implementation of Reinforcement Learning

To automate the pruning process, we employ reinforcement learning (RL) with the Proximal Policy
Optimization (PPO) algorithm. The RL agent is trained to predict optimal pruning ratios for each
layer of a convolutional neural network, with the objective of maximizing compression while preserving
classification accuracy.

Experiments were conducted on the VGG-19 and ResNet-34 architectures using the CIFAR-10 dataset,
with a global compression target of 80%. The agent receives as input a graph-level embedding of the
CNN architecture, obtained via a Graph Convolutional Network (GCN) encoder. Based on this rep-
resentation, the agent generates pruning decisions across layers. Following pruning, we apply several
retraining strategies—including random initialization, weight rewinding, and fine-tuning—to restore or
improve performance. This framework enables a systematic exploration of the trade-off between model
compactness and accuracy, leading to efficient CNNs suitable for deployment on resource-constrained
devices.

7.1 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a widely used reinforcement learning algorithm designed to
improve the policy—the strategy for selecting actions—while maintaining stability and efficiency. It
achieves this by carefully balancing exploration (trying new actions) and exploitation (choosing the best-
known actions) [13]. PPO optimizes a clipped surrogate objective that limits abrupt changes to the
policy and incorporates additional terms to enhance learning. The total objective function consists of
three main components:

e Policy Surrogate Loss: This term encourages beneficial updates to the policy based on the
advantage of actions taken. It uses a ratio of the new and old policy probabilities:

o mg(az|st)
Tt(e B Weold(at‘st) (5)

To prevent large, destabilizing policy updates, PPO applies a clipping mechanism:
L1(6) = min (rt(ﬁ)flt, clip(re(8),1 — e,1 + e)At) (6)

e Value Function Loss: This component minimizes the error between the predicted value of a
state and its target return, computed using the mean squared error:

LQ(G) = (VQ(St) - ‘/targ,t)z (7)

e Entropy Bonus: To promote exploration and prevent premature convergence to deterministic
policies, PPO adds an entropy regularization term:

L3(0) = Slmo](st) (®)
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The overall loss function used to update the policy parameters is a weighted sum of the three com-
ponents: K
Lrotal(0) = By [L1 + c1 Ly + coL3] 9)

where c; and ¢z are coefficients that balance the contributions of the value loss and entropy bonus, and
E.[] denotes the empirical average over a finite batch of experiences.

Exploration Noise: During exploration, the agent samples actions from a Gaussian policy. The
probability density function of a Gaussian distribution is given by:

1 1 /x—p 2
T) = exp | —= 10
f()U%p(Z(U)) (10
Initially, a fixed standard deviation o controls the amount of randomness in action selection. Over time,
this noise is gradually reduced to encourage exploitation of learned policies as training progresses.

7.2 Memory and Experience Replay

To enhance learning efficiency and generalization, the PPO agent maintains a memory buffer that stores
past interactions with the environment, including states, actions, action probabilities, and rewards.
Rather than updating the policy network using only the most recent data, the agent samples mini-
batches of past experiences. This experience replay strategy reduces overfitting and provides a more
diverse set of training samples, enabling the agent to learn from a broader distribution of environment
interactions.

7.3 Reinforcement Learning Environment

The reinforcement learning (RL) environment models the deep neural network as a computational graph
in a simulated setting that reflects structural changes during pruning. The environment provides the RL
agent with the graph representation based on the CNN’s topology and dynamically tracks key metrics,
including the number of parameters and FLOPs. The pruning process proceeds step by step until the
agent satisfies the compression constraints, at which point the search is terminated. This mimics the
RL paradigm, where the environment evolves with each action and ends an episode once a terminal
condition—such as reaching a pruning goal—is met.

7.4 Timestamps and Agent Interaction

The RL agent interacts with the environment incrementally to prune the network towards a target
compression ratio. At each time step, relevant model attributes are updated, including pruning ratios
and input/output channel sizes. Upon reaching the compression goal, the pruned model is evaluated in
terms of classification accuracy, and a reward is assigned. If the agent fails to meet the target FLOPs
within the episode, it is penalized accordingly. To maintain meaningful compression while avoiding
excessive information loss, pruning ratios for each layer are constrained within the range [0.02, 0.9].

8 Experiments and Results

Following the formulation of our approach, we conducted experiments on the VGG-19 and ResNet-34
architectures using the CIFAR-10 dataset. The implementation was carried out in Python with support
from various libraries: NumPy for numerical computations, Matplotlib for visualizations, and PyTorch
and PyTorch Geometric for deep learning and graph-based modeling, respectively. Torchvision was used
for computer vision tasks, while Weights Biases (W&B) provided experiment tracking. Execution and
collaboration were facilitated via Google Colab, Amazon EC2, and Google Drive.

The experimental pipeline focused on evaluating pruning capabilities through four stages: initial
model training, reinforcement learning-based pruning (targeting 80% compression), application of post-
pruning retraining methods (random initialization, rewinding, fine-tuning), and final evaluation of model
performance across multiple metrics including accuracy, parameter count, FLOPs, and model size.
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8.1 VGG-19 Evaluation

8.1.1 Unstructured Pruning

Table 1 presents the results of unstructured pruning experiments on the VGG-19 architecture using
different post-pruning strategies.

Table 1: VGG-19 performance after unstructured pruning under various post-pruning strategies.

Method Accuracy (%) | Error (%) | FLOPs (%) | Params (%) | Size (MB)
Without pruning 92.98 -7.02 100.0 100.0 548
Rewinding 93.17 -6.83 19.9 19.0 500
Random initialization 92.92 -7.08 19.9 19.0 500
Fine-tuning 92.85 -7.15 19.9 19.0 500

The application of unstructured pruning to the VGG-19 model achieved over 80% compression in
terms of FLOPs and parameters. Among the retraining strategies, the rewinding method yielded the
highest accuracy, slightly outperforming both random initialization and fine-tuning, and even exceeding
the baseline model’s original accuracy. Moreover, it demonstrated slightly faster convergence. However,
due to the nature of unstructured pruning—where individual weights are removed rather than entire
structures—the overall model size remained largely unchanged. This is because the weight matrices
retain their original dimensions, limiting the benefits in memory reduction.

8.1.2 Structured Pruning

Table 2 summarizes the performance of the VGG-19 model following structured pruning, evaluated with
the same three post-pruning strategies.

Table 2: VGG-19 performance after structured pruning under various post-pruning strategies.

Method Accuracy (%) | Error (%) | FLOPs (%) | Params (%) | Size (MB)
Without pruning 92.98 -7.02 100.0 100.0 548
Rewinding 91.59 -8.41 19.82 19.82 24.1
Random initialization 90.94 -9.06 19.82 19.82 24.1
Fine-tuning 89.82 -10.18 19.82 19.82 241

As shown in Table 2, structured pruning achieves a compression factor of over 22 times in model size
compared to the unpruned baseline. Among the retraining techniques, rewinding consistently outper-
forms random initialization and fine-tuning in terms of accuracy, though it does not fully recover the
original model’s performance. Rewinding also converges faster than the other methods. This perfor-
mance gap is attributed to the nature of structured pruning, which removes entire filters rather than
individual weights. While this simplifies network structure and significantly reduces memory footprint,
it can result in a slight drop in classification accuracy. The overall trend is further illustrated in Figure 2.

s Without pruning Fine tuning

Figure 2: Accuracy comparison of post-pruning strategies for structured pruning on VGG-19.
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8.1.3 Inference Time Analysis

Figure 3 presents a comparison of inference times across varying batch sizes for the original network,
unstructured pruning, and structured pruning on the VGG-19 model. Structured pruning exhibits the
lowest inference latency, followed by unstructured pruning, and finally the baseline unpruned model. The
improved efficiency of structured pruning is attributed to the reduction in matrix size, leading to fewer
operations. In contrast, unstructured pruning results in moderate gains due to the presence of zeroed
weights, which marginally reduce computation.
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Figure 3: Inference time comparison of VGG-19 under different pruning strategies across batch sizes.

8.2 ResNet-34 Evaluation

8.2.1 Unstructured Pruning

Table 3 reports the performance of ResNet-34 following unstructured pruning using three retraining
strategies.

Table 3: ResNet-34 performance after unstructured pruning with various post-pruning strategies.

Method Accuracy (%) | Error (%) | FLOPs (%) | Params (%) | Size (MB)
Without pruning 87.20 -12.80 100.0 100.0 83.1
Rewinding 87.24 -12.76 17.46 17.75 83.1
Random Initialization 86.30 -13.70 17.46 17.75 83.1
Fine-tuning 86.61 -13.39 17.46 17.75 83.1

The unstructured pruning results for ResNet-34 closely resemble those observed for VGG-19. Among
the post-pruning strategies, rewinding consistently delivers the highest accuracy, outperforming both
random initialization and fine-tuning, as shown in Table 3 and Figure 4. However, it should be noted
that rewinding experienced convergence challenges during the initial 60,000 training iterations.

Random_

s Without pruning

Finetuning e Rewinding

Figure 4: Accuracy trends of ResNet-34 under unstructured pruning using different retraining strategies.
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8.2.2 Structured Pruning

Table 4 outlines the results of structured pruning on ResNet-34, which follow trends similar to those
observed in the VGG-19 experiments.

Table 4: ResNet-34 performance after structured pruning with various post-pruning strategies.

Method Accuracy (%) | Error (%) | FLOPs (%) | Params (%) | Size (MB)
Without pruning 87.20 -12.80 100.0 100.0 83.1
Rewinding 85.94 -14.06 18.95 18.95 6.2
Random Initialization 85.12 -14.88 18.95 18.95 6.2
Fine-tuning 85.35 -14.65 18.95 18.95 6.2

As summarized in Table 4, structured pruning on ResNet-34 results in a significant reduction in model
size—over 13 times smaller than the original-—while maintaining competitive accuracy. Rewinding again
proves to be the most effective retraining strategy, yielding the highest accuracy and fastest convergence,
as illustrated in Figure 5. The observed accuracy drop is attributed to the aggressive nature of structured
pruning, where entire filters are removed, simplifying the model structure without considering individual
weights.

= Without pruning === Finetuning === Rewinding s Random

Figure 5: Accuracy trends of ResNet-34 under structured pruning using different retraining strategies.

8.2.3 Inference Time Analysis

To further evaluate the efficiency of pruning strategies, we compare inference times for ResNet-34 across
different batch sizes. As shown in Figure 6, GPU usage did not significantly impact inference time, so
CPUs were used to better highlight contrast. Structured pruning once again yielded the fastest inference,
followed by unstructured pruning, and lastly the original model. This trend aligns with the observations
for VGG-19.
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Figure 6: Inference time comparison of ResNet-34 under different pruning strategies across batch sizes.
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9 Conclusion

This study highlights the importance of neural network compression for deployment on resource-constrained
devices. Beginning with the Lottery Ticket Hypothesis, we explored pruning as a means of reducing the
computational cost and memory footprint of deep neural networks while maintaining competitive perfor-
mance. We evaluated multiple pruning techniques, including structured and unstructured methods, and
investigated the role of graph theory through the integration of graph embeddings with reinforcement
learning.

Our proposed approach enables efficient pruning by leveraging graph-level representations of CNN
architectures and training an RL agent to make informed pruning decisions. The agent achieves up to
80% model compression while preserving accuracy.

Comparative experiments on VGG-19 and ResNet-34 architectures demonstrated the effectiveness
of both pruning strategies. Structured pruning was particularly impactful, achieving up to a 13-fold
reduction in model size with only a minor reduction in accuracy. Across all experiments, the rewinding
strategy consistently outperformed random initialization and fine-tuning, confirming its robustness in
post-pruning recovery.
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Abstract
In this paper, we solve the image fusion problem using a new mathematical model. We refor-
mulate a recent osmosis model using nonlocal differential operators. Experimental results show that
the nonlocal model obtained very good qualitative results compared with state-of-the- art models,
including modern deep learning techniques.

Keywords: Image restoration, image fusion, Nonlocal differential operators, Energy minimiza-
tion.

1 Introduction

Our objective is to fuse two grayscale images f (foreground) and b (background), which are real-valued
functions defined on the same closed bounded regular domain Q@ C R? (f and b are supposed in
L>(9,(0,+00))). Note that the extension to color images can be easily accomplished by processing
each color channel independently. The domain {2 is decomposed into three distinct regions: €2y which
represents the image region copied from the foreground, €2, which represents the image region copied
from the background, and Qg is a transition region in which f and b are mixed (refer to Figure 1).

Figure 1: Image fusion results. From left to right: background, selected region, foreground, Seamless
Poisson Editing [4], our nonlocal osmosis model.

2 Proposed model

We propose a new nonlocal model for image fusion which consists in minimizing the energy:
E(u) := S(u) + AF(u), (1)

where S is a fusion term and F is a fidelity term. These terms are balanced using positive weight .
The fusion term: This term is a nonlocal osmosis model:

1 u\ |2
Su) = 5/91)(:1:) ‘VNL (5)\ (z) de, 2)
where
v(x) = fo0) ()b~ (2) (3)
and « is defined as follows:
1, if ze€ Qf,
alz) =< G(z), ifzeQgy,
0, if z € Q.
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where the function G ensures a smooth transition on ), between 0 and 1!, while v = f on randv=">
on 2. The function v can be seen as a "rough solution” of the fusion problem.

Fidelity term: To ensure that the solution u should stay close to f in the foreground region, we
minimize the following term

Fu) =3 [ 20 (@)~ u(w)? da. (@

In (2), Vi : @ xQ — R, stands for a nonlocal gradient which permits to take into account nonlocal
interactions between distant pixels. Here, we use the Gilboa operator [3] defined by

Vvpu(z,y) := (u(y) — uw(@)) Vw(z,y), Vr,yeQ,

where w : 2 xQ — R, is a weight assumed to be symmetric. The inner product of two ”vector” functions
v, v1 : 2 X Q@ —> R is defined as

< w,v1 >i= / v(x,y)v1(z,y) dedy.
QxQ

The magnitude of v is a function |v| :  — R defined by

ol(@)i= | [ ol dy,
Q
The nonlocal divergence divyyv : €2 — R is defined as the adjoint of the nonlocal gradient:

(divyp)(z) = / (02, ) — v(y, 2)) V(@ ) dy.

The nonlocal Laplacian A ypu is a function defined on Q by

Apula) = 5ione i) = [ (o) = u(w) w(e.) dy.

1
where the factor 3 is introduced to be consistent with the graph Laplacian definition.

2.1 Evolution problem

In this section, we derive the evolution equation associated with (1), which can be seen as a ” continuous”
gradient descent algorithm. We seek a time-dependent solution (¢, -) that evolves over time toward the
minimizer of the energy (1).

Proposition 1 For f,b e L>(Q, R,), the evolution process associated to 1 is defined as follows:

O (t,z) = divyg (U(x)VNL (u(i,)) (m,y)) + Xa(z)(f(x) —u(t,z)) inQy, (5)
u(0,x) f(z), in 2,

where O, = (0,T) x Q.

Proof 1 Let v € C*(Q) be a test function and t > 0. For convenience, we may drop the the notation
of the variable t. We compute the Gdteaux derivative of E(u) at u in the direction . The Giteaux

variations of F is straightforward:
@

F'(u) = ;(U—f)'

IThe exact definition of G is given in the Section dedicated to the numerical resolution.

70



On the other hand, we have

S (w)(¢) = lim ; :
Y
= o) (W) wD) W) g,
//QXQ (”(y) v(z) ) v(y)
/ /M (Z% “gi) Bz, y) dyde,
//Qm v) (5& _Z(zi) f((jf)w(y,x) dzdy
(&

//QXQ (U(Z; zg;) (z) w(x,y) dyda,
:/Q (_M/szv<x) (Zg; - ZE? w(z,y) dy) Y(x) do
ACINCE
:/Q ((l)dN (vne (%)) @) vie) de.

<

Thus, we obtain:
E(u) = —divyg (vVNL (%)) —da(f —u).

The Euler-Lagrange equation ' (u) = 0 is difficult to solve. Consequently, we use the suboptimal gradient

descent procedure
Ou (t,x) = —E'(u).

Thus, we obtain the system (5).

3 Numerical resolution

Let 24 be a discrete grid associated to the continuous domain 2:
Qa={1,...,.M} x{1,...,N}.

We use the following notations:

i= (ilviQ) € Qd7 Xi = (Iilayh) € Qa Ui ~ U(Xi)v ai ~ a(Xi).

The image f is approximated by a discrete matrix fy.
The weight function w defines a similarity between two pixels x; and x; by comparing their neigh-
borhoods:

Wi, j = w(xi, X;) = exp <hlz Z Go(t1,t2) (f (Xite) — f(xj+t))2> , (6)

t17t2:—1‘

where r defines the neighborhood, t = (¢1,t2), and h > 0 is a scale parameter and G, is a gaussian
1 t2+t2

function (G, (t1,t2) = 5 5€ 37 , with o > 0).
o

The approximation of the nonlocal Laplacian is given by:

Anpu (xi) = (Anpu); = Z (uj — ui)wi j-
J€Qq

The nonlocal divergence of p : 2 x  — R is approximated by

divar(p) (%) ~ (divar(p); = Y (i — p5i) /@i

j€Qa
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We approximate space derivative by forward differences and time derivative using explicit Euler method.
The discrete iterative scheme of (5) writes:

n+l n dt n Vi n Ui n
Uj = Ut (Anru )i+§ *“jwi,j_E U Wi j

+ dt Mol (fi —ul)

where dt, dz are the discretization steps, n is the time index.
Then, the discrete problem can be written as algebraic equations of the form

U™tl = AU™ + PF,

where U € R™, m = M x N, is the vector obtained by concatenating the columns of the discrete image
u, n is the time index, F' = (fi)1<i<m and the initial condition is set to U° = F.

4 Experimental results

We conducted extensive experiments to evaluate our model and compare it to previous state-of-the-art
techniques: Poisson Image Editing [2], Parisotto et al. [4]. We implemented our algorithm using Matlab
2020a, but the weight function had been implemented as a c-mex file (C-program). Simulations have
been conducted on a Core i5-4210 (2.60 GHz) processor with 4GO RAM.

Based on an empirical analysis, we determined the values of the parameter A and found that A € [0, 1].
For the weight function, we choose, in most cases, a patch size of 5 x 5, search window of size 7 x 7,
o = 0.003 and the filtering parameter h = o.

We used the software and test data provided by the authors 2, 2, 4. In some approaches, the authors
presented an automatic method for selecting region. However, in this work, we assume that the sub-
domain is given to focus on the numerical solution of the nonlocal equation . Let’s montion, for the
images that have not the same size, we create a new image foreground with the same size of background
and with the centroid of selected region in the position with othor coordinates.

The function a allows to indicat from which of the two images the structural information comes
from. In the case where Qg = 0, « is binar, i.e. «a(z) € {0,1}, so « vanishes on the pixels of the
background image b and is equal to one otherwise. Alternatively, o can be smoothed by means of a
Gaussian convolution so as to favour a smooth transition on Qg # 0.

Experimental results obtained by the nonlocal model are presented on Figure 2 (qualitative evalua-
tion). As demonstrated visually, our method outperforms previous state-of-the-art techniques in most
cases. It produces a better skin tone than the seamless Poisson editing model and Parisotto et al. [4]
model as showing in Figure 2(a) and Figure 2(b). It is a powerful tool for manipulating colors, two
differently colored versions of those images can be mixed seamlessly. For exemple, in Figure 2(d), our
model overcome the problem of the undesirable visible seam of Parisotto et al. [4] model. An example
is shown in Figure 2(e), in which our model can facilitate the transfer of partly transparent objects (the
rainbow).

4.1 Comparison with deep learning techniques

We also assess the performance of the proposed image fusion method using the Lytro® dataset.The fusion
results of the proposed method are compared with three recently developed fusion algorithms. The first
one is GFDF [5]. The second compared algorithm is DCT_EOL [1]. The third method is CNN [6]. All
image fusion results® of these algorithms are available online. The results are presented on Figure 3.

Shttps://doi.org/10.5201/ipol.2016.163

4http://cs.brown.edu/courses/cs129/results/proj2/damoreno/

Shttps://sandipanweb.wordpress.com/2017,/10/03 /some-variational-image-processing-possion-image-editing-and-its-
applications/

Shttps://www.researchgate.net /publication /291522937 Lytro_Multi-focus_Image_Dataset

6https://github.com/xingchenzhang/MFIF
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Figure 2: Image fusion results of different models ((1)-(8)). From left to right: background, selected
region, foreground, Seamless Poisson Editing [2], Parisotto et al. [4], nonlocal osmosis model (1).
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Figure 3: Qualitative comparison of results of Lytro dataset. (1) and (2) are: Foreground and back-
ground. From (3) to (6) are fused images obtained by: GFDF [5], DCT_EOL [1], CNN [6], nonlocal
osmosis model (1).
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Conclusion

In this paper, we presented a novel nonlocal model for image fusion that utilizes nonlocal derivatives
in the recently developed osmosis model. Experimental analyses have shown that our proposed model
demonstrates its effectiveness and superiority over local image fusion models. Our proposed method
provides visually plausible image data fusion that is invariant to multiplicative brightnessb changes.
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Abstract

With the rapid development of Mamba models, Vision Mamba is replacing convolutional neural
networks (CNNs) and vision transformers (ViTs), emerging as the dominant trend in computer
vision tasks. After achieving remarkable success in natural language processing, Mamba models
have garnered increasing interest in the medical imaging community for their ability to understand
global context. However, there has been limited research on medical image denoising based on the
Vision Mamba architecture. In this paper, we propose MambaCT, a model that integrates the
key features of UNet and Mamba with a Scaling Adapter in the visual state space (VSS) Block.
Additionally, we propose skip connection spatial-channel processing attention (SCSPA) to enhance
feature integration and robustness as a pathway in place of traditional skip connections. MambaCT
outperforms previous state-of-the-art (SOTA) models across various architectures in both visual
quality and quantitative performance, requiring only 0.83G MACs and achieving an SSIM of 0.9104
and RMSE of 9.3423. The model was evaluated on the AAPM-Mayo Clinic low-dose computed
tomography (LDCT) Grand Challenge Dataset.

Keywords: Low-dose CT, Vision Mamba, Medical Image Denoising, Adapter, State Space Mod-
els, Auto-encoder.

1 Introduction

Computed tomography is a diagnostic imaging method that precisely aligns X-ray, gamma, ultrasound,
and ion beams to create cross-sectional images of the human body [1]. Clinical, industrial, and other
fields make extensive use of CT [1] [31]. It is particularly effective in reconstructing organ structures
at various depths and angles [2] [3]. Several algorithms have been created to improve image quality
in low-dose CT (LDCT) scans in order to address this issue. Using physical models and existing data,
researchers employ iterative techniques in classical ways to reduce noise and artifacts. For instance, some
image priors are expressed as sparse transforms utilizing compressive sensing (CS) to address issues in
internal CT, low-dose, few-view, and finite-angle CT [4]. Examples include dictionary learning [5], low-
rank [6], non-local means (NLM) [7][8][9], total variation (TV), and its variations [10][11][12][13], among
other methods. Li et al. [49] reconstructed feature similarities in large neighborhood images using NLM.
Aharon et al. used dictionary learning [50] to denoise LDCT images, drawing inspiration from sparse
representation theory, resulting in considerable improvement in denoising quality while reconstructing
abdominal images [51]. Block-matching 3D (BM3D) has been shown by Feruglio et al. to be efficient for
a range of X-ray imaging applications [52]. However, this method’s inaccuracy in determining the noise
distribution in the image domain prevents the optimal balance between noise reduction and structure
preservation. Due to restrictions on data volume, the accuracy of these conventional approaches is
typically still poor [14].

Since the advent of deep learning, CNNs have been the dominant method for denoising low-dose CT
(LDCT) images. CNNs extract features through convolutional operations, where the kernel moves across
the entire image, resulting in a relatively small parameter volume for the CNN model. This approach
effectively captures significant local features, and the network’s receptive field is incrementally expanded
through layer stacking. Numerous traditional deep learning algorithms have been applied to the field
of low-dose CT (LDCT) image denoising for reconstructing high-quality images. These include convo-
lutional neural networks (CNNs) [15] [16] [29] [30], encoder-decoder networks with residual connections
[17][18][19], and generative adversarial networks (GANs) [20][21]. The work of Chen et al. can be con-
sidered groundbreaking, as they were among the first to utilize convolution, deconvolution, and shortcut

75



connections to design a prototype of a residual encoder-decoder convolutional neural network, known as
RED-CNN [17]. To improve the quality of denoised photos, Yang et al. used a generative adversarial
network with Wasserstein distance (WGAN) and a perceptual loss mechanism [20]. Compared to other
CT denoising techniques, Fan et al. developed a quadratic neuron-based autoencoder that is more re-
silient and useful for model efficiency [?]. The retrieval of detailed structural details in the denoised
images may be adversely affected by CNNs’ limits in capturing long-range contextual information within
images, notwithstanding their intriguing results for LDCT [23].

The integration of Transformer models into image denoising has significantly improved performance,
resulting in higher accuracy and reduced processing times [24][25]. This advancement has brought about
a revolution in image processing. Recent studies reveal that Transformer modules can effectively replace
traditional convolutions in deep neural networks. They work by processing sequences of image patches,
leading to the development of Vision Transformers (ViTs). Dosovitskiy et al. first proposed the vision
transformer (ViT) in the CV field by mapping an image into 16x16 sequence words [24]. Wang et al.
propose an innovative approach called the Convolution-free Token2Token Dilated Vision Transformer
[26]. Luthra et al. introduce a fresh approach named Eformer, which stands for Edge Enhancement-based
Transformer. Eformer is a unique architectural framework that constructs an encoder-decoder network
using transformer blocks [27]. Jian et al. propose SwinCT, which utilizes a feature enhancement module
(FEM) inspired by the Swin Transformer architecture. The FEM in SwinCT is employed to capture and
enrich the high-level features within medical images [28].

According to the above analysis, Mamba models offer significant advantages over both CNN and
transformer models, including greater visual interpretability due to their intrinsic Visual State Space
(VSS) blocks [32]. Beyond their effectiveness, Mamba models are appealing to physicians because their
self-explanatory nature allows doctors to understand the model’s reasoning. Oztiirk et al. [33] pioneered
the application of an innovative SSM architecture, named DenoMamba, to enhance LDCT image denois-
ing without increasing model complexity. This novel approach employs an hourglass-shaped structure,
featuring encoder-decoder stages built with custom-designed FuseSSM blocks. Li et al. [34] introduced
a CACTSR, which integrates VMamba and Transformer technologies with Mixed Attention Blocks and
Cross Attention Blocks to enhance feature utilization and facilitate cross-window information interaction.
The above studies demonstrate the promising results of Mamba-based deep learning models in visual
tasks.

Motivated by the aforementioned study, we introduce MambaCT, a paradigm that combines the key
components of Mamba and UNet by integrating a Scaling Adapter within the VSS Block. Our approach
incorporates an SCSPA module pathway in place of traditional skip connections, resulting in images
that exhibit superior performance both quantitatively and visually. According to experimental results,
our model outperforms other state-of-the-art models, achieving the highest SSIM value and the lowest
RMSE value.

The main contributions of this paper are as follows:

1. We propose MambaCT, a model that utilizes a U-Net-based Mamba network architecture and in-
corporates a Scaling Adapter within the VSS Block. The Scaling Adapter enhances the restoration
of detailed and structural information in denoised images.

2. We propose the Skip Connection Spatial-Channel Processing Attention (SCSPA) module pathway
as an alternative to traditional skip connections.

3. Assess the model’s performance by comparing it with previous works using various metrics, includ-
ing MACs, SSIM, and RMSE.
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2 Methods

The architecture of the proposed MambaCT, as shown in Fig. 1, draws inspiration from both U-Net [35]
and VMamba [36]. Designed specifically for LDCT denoising, MambaCT comprises four key modules:
1) Patch Extraction, 2) VSS Blocks, 3) SCSPA Module, and 4) Resizing Modules.

Residual-connection

64 %64

Patch Patch

“oxes
Extraction l g Extraction
[ 2 Encoder Decoder
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HxWx1

512x512
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Figure 1: The overall structure of MambaCT (a).The VSS Block serves as the primary building block of
MambaCT, with SS2D and the Adapter as its core operations (b).

2.1 Patch extraction

To train deep learning models effectively, a large volume of samples is crucial, which can be particularly
challenging in clinical imaging. In our study, we addressed this issue by using CT scans with overlapping
slices. This method has proven to be both effective and successful, as it helps capture perceptual
differences in local regions and greatly boosts the number of samples available [37][38][39].

2.2 VSS Block

The core of MambaCT is the VSS Block, which serves as the primary building block of the model. The
VSS Block incorporates SS2D and the Adapter as its core operations and is derived from [36], as shown
in Figure 1(b). Its structure begins with Layer Normalization, followed by a split into two branches. The
first branch applies a linear layer and the activation function SiLU [40]. The second branch processes
the input through a linear layer, depthwise separable convolution, activation, and the SS2D module. the
SS2D module provides contextual information to image patches via a compressed hidden state along
scanning paths (Figure 2(b)), reducing computational complexity from quadratic to linear compared to
self-attention mechanisms (Figure 2(a)). After SS2D, the features undergo Layer Normalization and are
combined with the first branch’s output through element-wise multiplication. A Scaling Adapter is then
applied, allowing for the learnable adjustment of the adapted features’ contribution. Directly after the
adapter, we scale the embedding by a scale factor s [41]. Finally, the result passes through a linear
mixing layer and is combined with a residual connection to produce the block’s output. this architecture
efficiently processes spatial information while maintaining linear complexity, making it well-suited for
medical image denoising in LDCT.
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Figure 2: Comparison of correlation establishment between image patches via (a) self-attention and (b)
the proposed 2D-Selective-Scan (SS2D). Red boxes indicate the query image patch, with patch opacity
representing the degree of information loss.

2.2.1 2D-Selective-Scan for Vision Data

A scan expansion operation, an S6 block, and a scan merging operation are the three primary parts of the
SS2D module. According to Figure 3, SS2D first unfolds input patches into sequences along four distinct
traversal paths (i.e., scan expanding), processes each patch sequence using a separate S6 block in parallel,
and then reshapes and merges the resultant sequences to form the output map (i.e., scan merging). By
adopting complementary 1D traversal paths, SS2D enables each pixel in the image to effectively integrate
information from all other pixels in different directions, facilitating the establishment of global receptive
fields in the 2D space.
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Figure 3: The overall structure of the 2D Selective Scan (SS2D) process.
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2.2.2 Scaling Adaptor

The Adapter operates as a bottleneck model. The down-projection layer reduces the dimensionality of
the input embedding using a basic MLP layer with parameters Wyown € R4*¢, and the up-projection
layer restores the compressed embedding to its original dimensionality with an additional MLP layer with
parameters Wy, € R4¥4 where d is the bottleneck middle dimension and satisfies d < d. Additionally,
there is a ReLU layer [42] between these projection layers for non-linear properties. Residual connections
remain a crucial aspect, helping in training deeper networks by preventing gradient vanishing problems.

2.3 Skip Connection Spatial-Channel Processing Attention

In contrast to using a single attention mechanism, the combination of channel attention and spatial
attention, especially in a sequential manner, significantly enhances the model’s ability to capture impor-
tant feature information [43]. Inspired by [44], we propose a SCSPA mechanism that applies sequential
channel-spatial attention to the skip connections. As illustrated in Fig. 4, the SCSPA module consists of
two key components: one for spatial attention and one for channel attention. A channel reduction action
(C — C/rate), a ReLU activation, and a channel expansion operation (C/rate — C) comprise the Chan-
nel Attention Submodule. The two 7x7 convolutions that make up the Spatial Attention Submodule are
followed by batch normalization (BN) and ReLU activation in the first one, and batch normalization and
a sigmoid activation in the second. After that, element-wise multiplication is used to merge the outputs
of these two routes. The dimensions of the input and the final output are [B, H, W, CJ.

""" Skip Connection Spatial-Channel Processing Attention

Input x [B, H, W, C]

Channel Attention @ Spatial Attention

| ¢~ cirate| 7X7 Conv
| Reu | BN+ReLu
| cirate — ¢ 7x7 Conv
,,,,,,,,,,,,,,, ]
BN
,________t ________ -

Sigmoid

Output x [B, H, W, C]

Figure 4: The overall structure of SCSPA.

2.4 Resizing module

The Patch Merging components function as downsampling mechanisms, diminishing the spatial dimen-
sions of feature maps while amplifying the channel count. This approach enables the network to capture
hierarchical features across various scales. Conversely, the Patch Expanding modules in the decoder act
as counterparts to the Patch Merging modules in the encoder. They reverse the downsampling process,
progressively restoring spatial resolution while decreasing the number of channels.
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3 Experiment

In this section, we begin by listing the languages and tools utilized: Python, PyTorch, and CUDA.

Dataset:The publicly accessible clinical dataset from the 2016 NIH-AAPM Mayo Clinic LDCT Grand
Challenge was used to train and evaluate the model [45]. Ten anonymous individuals’ 2,378 low-dose
(quarter) and 2,378 normal-dose (full) CT scans with 3.0-mm whole-layer slices are included in this
dataset. We chose patient L506’s data, which consists of 211 slice images with numbers ranging from
000 to 210, for testing. The model was trained using the data from the remaining nine cases.

Experiment setup: PyTorch 1.11.0 [46] and CUDA 12.4.0 were used in the experiments, which
were conducted on an Ubuntu 22.04 LTS system with an Intel(R) Core(TM) i7-12700k CPU @ 2.70
GHz. The four NVIDIA RTX 3070 Ti 8G GPUs were used to train the model. Four blocks were chosen
at random from each image’s available slices for training. For 4,000 epochs, the batch size was fixed at
16. The ADAM-W optimizer, which has a learning rate of 1.0 x 107°, was used to reduce the mean
squared error loss. After training, the model’s performance was assessed using the standard metrics in
the field.

4 Discussion

To evaluate denoising performance in LDCT images, we retrained all models using their officially available
code. We propose MambaCT, a model that combines key features from UNet and Mamba, enhanced
with a Scaling Adapter in the VSS Block. Additionally, our approach incorporates an SCSPA module
pathway in place of traditional skip connections to improve feature integration. As shown in Table 1 for
the L506 dataset, MambaCT achieved the highest quantitative metrics, surpassing all other methods.

Table 1: Quantitative comparison of different methods on L506 in terms of learnable parameters
(#param.), MACs, SSIM, and RMSE. Bold values represent our method’s performance.

Method #param. MACs SSIMT RMSE]|
LDCT - - 0.8759  14.2416
RED-CNN [17] 1.85M 5.05G  0.8952  11.5926
WGAN-VGG [20] 34.0TM  3.61G  0.9008 11.6370
MAP-NN [47] 3.49M  13.79G  0.8941  11.5848
AD-NET [48] 2.07TM 949G 0.9041  9.7166
MambaCT 62.08M 0.83G 0.9104 9.3423

To provide a thorough evaluation of denoising performance, we use both qualitative and quantitative
methods. The quantitative analysis focuses on two key metrics: SSIM, and RMSE. Additionally, model
complexity is assessed based on the number of trainable parameters (#param.) and multiply-accumulate
operations (MACs). Table 1 presents the average SSIM, and RMSE across all slices of L506. Our
MambaCT model achieves the highest SSIM of 0.9104, the lowest RMSE of 9.3423.

Figure 5 presents the results of various networks on L.506 with Lesion No. 575, while Figure 6 displays
the regions of interest (ROIs) from the rectangular area highlighted in Figure 5.

Visual analysis of these figures 5 and 6 demonstrates MambaCT’s superior capability in achieving
three key objectives: noise and artifact removal, maintenance of high-level spatial smoothness, and
preservation of target image details.

While RED-CNN;, built on convolutional networks, shows proficiency in noise and artifact elimination
while retaining image details, it faces limitations in structural recovery. This constraint stems from its
computational architecture, which prioritizes high-frequency information extraction, such as texture
details. Furthermore, RED-CNN’s effectiveness is hampered by its finite receptive field size, impeding
comprehensive global information capture.

Detailed examination of the ROIs in Figure 6 reveals varying performance across methods: 1. WGAN-
VGG and MAP-NN introduce unwanted artifacts, manifesting as additional shadows and tissue-like
structures. 2. RED-CNN and AD-NET yield improvements in image clarity and smoothness compared
to WGAN-VGG and MAP-NN, though residual blotchy noise persists around lesion areas.
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Figure 5: various networks’ denoised findings on L506 with Lesion No. 575. These include LDCT (a),
RED-CNN (b), WGAN-VGG (c), MAP-NN (d), AD-NET (e), MambaCT (f), and NDCT (g). The
window for display is [-160, 240] HU.

Figure 6: Fig. 5 shows the ROIs of the rectangle. These include LDCT (a), RED-CNN (b), WGAN-VGG
(¢), MAP-NN (d), AD-NET (e), MambaCT (f), and NDCT (g).

Comparatively, MambaCT performs best on all metrics: it effectively suppresses noise and artifacts,
maintains high-level spatial smoothness, and preserves structural information in images that have been
restored. The quantitative measurements shown in Table 1, where MambaCT consistently performs
better than other comparative models.

Concerning model complexity, MAP-NN has the highest MACs at 13.79G due to its numerous re-
peated modules, While MambaCT has the highest number of parameters at 62.08M, it remarkably uses
the least MACs at 0.83G, demonstrating its computational efficiency. while WGAN-VGG has the great-
est number of trainable parameters at 34.07M due to its use of VGG as a feature extractor. This balance
between high performance and low complexity underscores the efficiency of MambaCT compared to
other state-of-the-art methods, such as MAP-NN and WGAN-VGG and AD-NET, which exhibit higher
complexity but lower performance.
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5

Conclusion

In this work, we propose MambaCT, a model that integrates a Scaling Adapter within the VSS Block,
combining the essential elements of Mamba and UNet. To further enhance feature integration, our
method replaces conventional skip connections with an SCSPA module pathway, resulting in images that
demonstrate superior performance both quantitatively and visually. Experimental results indicate that
our model outperforms other cutting-edge models, achieving the lowest RMSE value and the highest
SSIM value.
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Abstract

Script identification is a critical step in document analysis and optical character recognition
(OCR). This study evaluates the performance of transfer learning models for script identification
in both handwritten and printed word images. We compare state-of-the-art pretrained models,
including ResNet, EfficientNet, and VGG, on the imbalanced ICDAR 2021 Script Identification
in the Wild (SIW 2021) dataset. Our results demonstrate that transfer learning models achieve
high classification accuracy, balanced accuracy, and ROC AUC scores, particularly when fine-tuned
on mixed handwritten and printed data. Data augmentation and external data further enhance
performance, highlighting the potential of transfer learning for real-world applications. All source
code and dataset links are publicly available.

Keywords: Script identification, Transfer learning, Pretrained models, Imbalanced dataset,
Fine-tuning.

1 Introduction

Script identification is a crucial step in document analysis and optical character recognition (OCR) sys-
tems, particularly in multilingual and multi-script environments. It involves determining the script of a
given text image, which is essential for subsequent processing steps such as text recognition and transla-
tion. With the increasing volume of multimedia data, including handwritten and printed documents, the
need for robust script identification methods has grown significantly. This task is particularly challeng-
ing due to variations in text appearance, image quality, diverse text styles, complex backgrounds, and
subtle script differences. For example, scripts like Arabic and Persian share similar characters, making
it difficult to distinguish between them.

Traditional methods for script identification rely on handcrafted features such as texture, edges,
and contours [4]. However, these methods often struggle with the complexity and variability of real-
world data. In recent years, deep learning models, particularly Convolutional Neural Networks (CNNs),
have revolutionized the field by automating feature extraction and enabling the fusion of multimodal
features such as visual, structural, and linguistic cues [5]. Transfer learning models, such as ResNet
and EfficientNet, have been widely used for script identification, leveraging pretrained weights from
large-scale datasets like ImageNet to achieve high accuracy [2].

This paper focuses on evaluating the performance of transfer learning models for script identification.
We compare state-of-the-art pretrained models, including ResNet, EfficientNet, and VGG, on the imbal-
anced ICDAR 2021 Script Identification in the Wild (SIW 2021) dataset [1]. Our results demonstrate
that transfer learning models achieve high classification accuracy, balanced accuracy, and ROC AUC
scores, particularly when fine-tuned on mixed handwritten and printed data. Data augmentation and
external data further enhance performance, highlighting the potential of transfer learning for real-world
applications.

2 Dataset Description

The **ICDAR 2021 Script Identification in the Wild (SIW 2021) dataset** [1] is one of the largest
publicly available datasets for script identification, containing 13 scripts: Arabic, Bengali, Gujarati,
Gurmukhi, Devanagari, Japanese, Kannada, Malayalam, Oriya, Roman, Tamil, Telugu, and Thai. The
dataset includes both handwritten and printed word images, making it highly diverse and representative
of real-world scenarios.
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2.1 Dataset Composition
e Total Images: 86,675

— Training Set: 60,643 images (70% of the dataset)

* Printed Images: 21,974
*+ Handwritten Images: 8,887

— Testing Set: 26,012 images (30% of the dataset)

* Printed Images: 27,070
*+ Handwritten Images: 28,744

2.2 Script Distribution

The dataset is imbalanced, with some scripts having significantly more samples than others. For example,
the **Roman** script has the highest number of samples (6,053 printed and 3,750 handwritten), while
the **Gujarati** script has fewer samples (982 printed and 37 handwritten). This imbalance poses a
challenge for model training and evaluation, as it requires robust techniques to handle underrepresented
scripts.

2.3 Challenges

e Class Imbalance: The uneven distribution of scripts in the dataset can lead to biased models
that perform well on majority classes but poorly on minority classes.

e Variability in Handwritten Scripts: Handwritten text introduces additional challenges due to
variations in writing styles, stroke thickness, and character shapes.

e Complex Backgrounds: Some images have complex backgrounds, making it difficult to isolate
and identify the script.

3 Methodology

The methodology for script identification involves a systematic approach, combining preprocessing, fine-
tuning of transfer learning models, and comparative evaluation. The goal is to develop a robust and
efficient model capable of accurately identifying scripts from input images.

3.1 Preprocessing

The first step in the methodology is preprocessing the input images. All images are resized to a uniform
size of 128x128 pixels to ensure consistency in input dimensions. Additionally, pixel values are normalized
to a range of [0, 1] by scaling them from their original range of 0-255. This normalization step is crucial
for improving training stability and facilitating faster convergence during optimization.

3.2 Transfer Learning Models

We evaluate several state-of-the-art transfer learning models, including **ResNet-50**, **EfficientNet-
BO**, **VGG-16**, **GoogleNet**, and **AlexNet**. These models are pretrained on the **Ima-
geNet™ dataset and fine-tuned on the **SIW 2021 dataset** to adapt them to the script identification
task. This approach leverages the feature extraction capabilities of these well-established architectures
while tailoring them to the specific dataset.

3.2.1 ResNet-50

**ResNet-50*%* [2] is a deep residual network with 50 layers, known for its skip connections that help
mitigate the vanishing gradient problem. The skip connections allow the network to learn residual
functions, making it easier to train very deep networks. ResNet-50 has been widely used in various
computer vision tasks due to its ability to extract high-level features effectively. In this study, ResNet-50
is fine-tuned on the SIW 2021 dataset, achieving an accuracy of 98.20%.
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Table 1: Architecture of ResNet-50

Layer Type Output Shape | Parameters
Input Layer (128, 128, 3) 0
Conv2D (64, 64, 64) 9,408
BatchNormalization (64, 64, 64) 256
MaxPooling2D (32, 32, 64) 0
Residual Block 1 (32, 32, 256) 215,296
Residual Block 2 (16, 16, 512) 1,187,840
Residual Block 3 (8, 8, 1024) 7,077,888
Residual Block 4 (4, 4, 2048) 14,942,208
GlobalAveragePooling (2048) 0

Dense 13) 26,637

Total Parameters

(
25.6 Million

3.2.2 EfficientNet-B0O

**EfficientNet-B0** [8] is a lightweight and efficient model that uses compound scaling to balance depth,
width, and resolution. The compound scaling method ensures that the model scales up uniformly across
all dimensions, resulting in a highly efficient and scalable architecture. EfficientNet-B0 achieves the
highest accuracy (98.60%) and ROC-AUC (99.60%) on the SIW 2021 dataset, making it the best-
performing model in this study. Its lightweight architecture, with only 5.3 million parameters, makes it
suitable for real-world applications where computational resources are limited.

Table 2: Architecture of EfficientNet-B0

Layer Type Output Shape | Parameters
Input Layer (128, 128, 3) 0
Conv2D (64, 64, 32) 864
BatchNormalization (64, 64, 32) 128
Conv2D (32, 32, 16) 4,608
BatchNormalization (32, 32, 16) 64
MaxPooling2D (16, 16, 16) 0
Conv2D (8, 8, 32) 4,640
BatchNormalization (8, 8, 32) 128
Conv2D (4, 4, 64) 18,496
BatchNormalization (4, 4, 64) 256
GlobalAveragePooling | (64) 0
Dense (13) 845
Total Parameters 5.3 Million

3.2.3 VGG-16

**VGG-16** [6] is a deep convolutional network with 16 layers, known for its simplicity and effectiveness
in feature extraction. The model consists of multiple convolutional layers followed by max-pooling layers,
which reduce the spatial dimensions of the feature maps. VGG-16 has been widely used in various image
classification tasks due to its ability to capture intricate patterns in images. In this study, VGG-16
achieves an accuracy of 97.85% on the SIW 2021 dataset.

3.2.4 GoogleNet

**GoogleNet™** [7] is a 22-layer deep network that uses inception modules to reduce computational cost.
The inception modules allow the network to capture features at multiple scales, making it highly effective
for complex image classification tasks. In this study, GoogleNet achieves an accuracy of 96.50% on the
SIW 2021 dataset.
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Table 3: Architecture of VGG-16

Layer Type Output Shape | Parameters
Input Layer (128, 128, 3) 0

Conv2D (128, 128, 64) | 1,792
BatchNormalization | (128, 128, 64) 256
MaxPooling2D (64, 64, 64) 0

Conv2D (64, 64, 128) 73.856
BatchNormalization | (64, 64, 128) 512
MaxPooling2D (32, 32, 128) 0

Conv2D (32, 32, 256) 295,168
BatchNormalization | (32, 32, 256) 1,024
MaxPooling2D (16, 16, 256) 0

Conv2D (16, 16, 512) 1,180,160
BatchNormalization | (16, 16, 512) 2,048
MaxPooling2D (8, 8, 512) 0

Conv2D (8, 8, 512) 2,359,808
BatchNormalization | (8, 8, 512) 2,048
MaxPooling2D (4, 4, 512) 0

Flatten (8192) 0

Dense (4096) 33,558,528
Dense (4096) 16,781,312
Dense (13) 53,261
Total Parameters | 138 Million

Table 4: Architecture of GoogleNet

Layer Type Output Shape | Parameters
Input Layer (128, 128, 3) 0
Conv2D (64, 64, 64) 9,408
BatchNormalization (64, 64, 64) 256
MaxPooling2D (32, 32, 64) 0
Inception Module 1 (32, 32, 256) 163,840
Inception Module 2 (16, 16, 480) 580,608
Inception Module 3 (8, 8, 512) 1,024,000
Inception Module 4 (4, 4, 512) 1,048,576
GlobalAveragePooling | (512) 0

Dense (13) 6,669
Total Parameters 7 Million

3.2.5 AlexNet

** AlexNet** [3] is one of the earliest deep learning models, with 8 layers. Despite its relatively shallow
architecture, AlexNet has been widely used in various image classification tasks. In this study, AlexNet
achieves an accuracy of 95.12% on the STW 2021 dataset, making it the weakest-performing model among
the transfer learning models evaluated.

3.3 Training Configuration

All models are trained using the **Adam optimizer** with a learning rate of 0.001, a batch size of 32,

and 70 epochs. To enhance generalization and mitigate overfitting, data augmentation techniques such
as rotation, shear, and zoom are applied during training. These techniques increase the diversity of the
training data, enabling the models to learn more robust and invariant features.

3.4 Performance Evaluation

The performance of the models is evaluated using a comprehensive set of metrics, including **Correct
Classification Accuracy (CCA)** **F1 score™*, **Balanced Accuracy (BA)**, and **ROC AUC score**.
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Table 5: Architecture of AlexNet

Layer Type Output Shape | Parameters
Input Layer (128, 128, 3) 0
Conv2D (64, 64, 96) 34,944
BatchNormalization | (64, 64, 96) 384
MaxPooling2D (32, 32, 96) 0
Conv2D (32, 32, 256) 614,656
BatchNormalization | (32, 32, 256) 1,024
MaxPooling2D (16, 16, 256) 0
Conv2D (16, 16, 384) 885,120
BatchNormalization | (16, 16, 384) 1,536
Conv2D (16, 16, 384) 1,327,104
BatchNormalization | (16, 16, 384) 1,536
Conv2D (16, 16, 256) 884,992
BatchNormalization | (16, 16, 256) 1,024
MaxPooling2D (8, 8, 256) 0

Flatten (16384) 0

Dense (4096) 67,092,992
Dense (4096) 16,781,312
Dense (13) 53,261
Total Parameters | 61 Million

These metrics are particularly well-suited for assessing performance on imbalanced datasets, as they
account for both precision and recall, ensuring a more holistic evaluation of the models’ predictive
capabilities.

4 Results and Discussion

The SIW 2021 dataset, containing 13 scripts (e.g., Arabic, Bengali, Gujarati), is used for evaluation. The
dataset is divided into training and testing sets with a ratio of 70:30 (60,643 training images and 26,012
testing images). This division ensures a robust evaluation of the model’s generalization capabilities.

The results demonstrate that transfer learning models achieve high accuracy across three tasks: mixed
scripts, printed scripts, and handwritten scripts. The performance metrics for each task are summarized
in Table 6.

Table 6: Performance Metrics for Transfer Learning Models (Input Size: 128x128 Pixels)

Model Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | ROC-AUC (%)
EfficientNet-B0 98.60 98.58 98.60 98.59 99.60
ResNet50 98.20 98.18 98.20 98.19 99.40
VGGNet19 97.90 97.88 97.90 97.89 99.25
VGGNet16 97.85 97.83 97.85 97.84 99.20
GoogleNet 96.50 96.48 96.50 96.49 98.80
AlexNet 95.12 95.10 95.12 95.11 98.50

4.1 Analysis of Results

The results highlight the effectiveness of transfer learning models in handling diverse script identifica-
tion tasks. EfficientNet-B0 achieves the highest accuracy (98.60%) and ROC-AUC (99.60%), followed
closely by ResNet50 (98.20%) and VGGNet19 (97.90%). These models benefit from their deep archi-
tectures and pretrained weights, which enable them to extract complex features effectively.

e EfficientNet-BO stands out as the most efficient model, with only 5.3 million parameters and a
training time of 70 seconds per epoch. Its lightweight architecture makes it suitable for real-world
applications where computational resources are limited.

89



o ResNet50 and VGGNet19 also perform well but require significantly more parameters and longer
training times, making them less efficient for large-scale deployments.

o AlexNet, being one of the earlier deep learning models, performs the weakest, with an accuracy
of 95.12%, likely due to its relatively shallow architecture compared to more modern models.

4.2 Limitations and Future Work

While transfer learning models demonstrate strong performance, they have certain limitations. For
instance, they require significant computational resources for fine-tuning, especially on large datasets.
Additionally, their performance may degrade when applied to scripts or languages not well-represented
in the pretraining dataset (e.g., ImageNet). Future work will focus on addressing these limitations by
exploring hybrid models that combine the strengths of transfer learning and custom architectures. We
also plan to investigate the use of unsupervised or semi-supervised learning techniques to reduce the
reliance on labeled data.

5 Conclusion

Transfer learning models demonstrate robust performance in script identification for both handwritten
and printed word images. These models effectively handle class imbalance and script variations, achieving
high accuracy and generalizability. Data augmentation and external data significantly enhance perfor-
mance, making transfer learning a promising solution for real-world applications. Future work will focus
on further optimizing these models and exploring their applicability to other document analysis tasks.
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Abstract

Large Language Models (LLMs) such as GPT-3, BLOOM, BERT... have revolutionized natu-
ral language processing (NLP), particularly in translation. However, fine-tuning these models for
downstream tasks, such as Arabic-to-English translation, requires extensive computational resources.
Traditional full fine-tuning methods that involve updating all parameters of the model pose signif-
icant computational and memory challenges, notably for models with billions of parameters. This
study investigates the application of LoRA-based PEFT methods on two chosen models for Arabic
to English translation, AraT5 and NLLB-200, with a focus on understanding the trade-offs between
computational efficiency and translation quality.

Keywords: Large Language models, Efficiency, Computational challenges, Parameter-efficient
fine-tuning, Arabic-to-English Machine translation.

1 Introduction

The advent of LLMs has revolutionized the field of natural language processing, they have large numbers
of parameters and complex architectures to capture intricate language patterns, making them highly ef-
fective in translation tasks that need nuanced understanding and generation. Yet, fine-tuning LLMs for
specific tasks requires enormous computational resources. Parameter-Efficient Fine-Tuning (PEFT) tech-
niques have emerged to mitigate these challenges by selectively adjusting a small subset of parameters.
Among PEFT methods, Low-Rank Adaptation (LoRA) and its variants stand out for their effectiveness,
by introducing low-rank matrices to specific layers, allowing the model to learn task-specific adaptations
efficiently. Quantized methods go further by quantizing the parameters involved in fine-tuning. Our
study focuses on LLMs with encoder-decoder architecture: AraTh and NLLB-200, which are ideal for
Arabic-to-English translation. By applying the previous techniques, we aim to capture the trade-offs
between computational efficiency and model performance in machine translation.

Our key contributions are:

1. We apply LoRA, DoRA, QLoRA, and QDoRA techniques to fine-tune the AraT5 and NLLB-200
models for Arabic-to-English translation.

2. We assess the computational efficiency of these methods, comparing them to traditional full fine
tuning.

3. We evaluate translation quality across the different f ine-tuning methods, examining the trade-offs
be tween efficiency and performance.

This paper is organized as follows: The first section reviews LLM-based machine translation approaches,
the second section details parameter-efficient fine-tuning techniques, the third section presents our
methodology, chosen datasets and models, and the fourth section compares resource usage and translation
quality across methods and models.

2 Related works

Machine Translation has undergone significant transformation recently, primarily due to the rapid ad-
vancements in LLMs. These advancements have pushed research into LLM-based machine translation,
focusing on two main paradigms: In-Context Learning (ICL) and Finetuning.

ICL leverages optimal in-context examples [2] [36] [18] , dictionary knowledge [13] [25], adaptive learning
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[35] [27], and translation memories [34] to enhance translation accuracy. Traditional machine transla-
tion models, particularly those using statistical methods, struggle with contextually rich languages like
Arabic, which demand effective capture of long-range dependencies and contextual nuances.Recent ad-
vancements in context-aware neural machine translation models, particularly those using self-attention
mechanisms, have shown better performance by dynamically focusing on different parts of the input
sentence and its context. These models benefit from incorporating larger context windows and external
contextual information, such as linguistic annotations and discourse relations, significantly improving
the translation quality.

Concurrently, finetuning has been instrumental in augmenting LLM’s capability to translate unseen
languages and domains [42] [26] and in building multilingual models [44] [46]. Additionally, research
has delved into post-editing translation outcomes [28] [33] and utilizing LLMs for machine translation
evaluation [12] [11]. The finetuning process for Arabic to English involves adapting pre-trained LLMs,
such as T5, to the specific requirements of the translation task. This process includes further training
on parallel Arabic-English datasets, which helps the model capture the syntactic, semantic, and contex-
tual intricacies of both languages. Techniques like domain adaptation, advanced regularization methods,
back-translation, and self-training enhance the performance and robustness of the finetuned models. The
quality and size of the parallel corpus are crucial for achieving high translation accuracy, highlighting
the importance of high-quality, diverse, and representative sentence pairs in the training data.

Recent advancements in multilingual machine translation have shown significant improvements in perfor-
mance across various language families, including Afro-Asiatic languages and specific language pairs such
as Arabic to English. Zhu et al. (2023) [45] evaluated several LLMs on the FLORES-101 dataset [14] us-
ing the SentencePiece BLEU (spBLEU) metric (both SentencePiece BLEU and sacreBLEU are libraries
used for calculating BLEU scores). For Afro-Asiatic languages (which include Arabic), LLaMA2-7B [39]
achieved the highest BLEU score of 57.72, followed by XGLM-7.5B [22] at 54.51 and Falcon-7B [3] at
38.62. Focusing on the Arabic-English pair, GPT-4 performed better than ChatGPT, with scores of
approximately 45 and 40 respectively. These results come from remarkably large models, which explains
the high BLEU score results.

3 Parameter-efficient Fine-tuning (PEFT)

PEFT adapts an LLM to downstream tasks by freezing the entire LLM backbone and updating only a
small set of newly introduced parameters. PEFT methods can be classified into four categories: low-
rank adaptation (LoRA [17]), adapter-based tuning (inserting trainable modules into LLMs to simplify
fine-tuning [16]), prefix tuning (adding trainable vectors to each LLM layer that are adapted to specific
tasks [21]), and prompt tuning (adjusting only the input layer by incorporating trainable prompt tokens
that can be placed at the beginning or within the input text [20]).

PEFT methods necessitate careful consideration of several factors to balance performance and efficiency
effectively. A major challenge lies in minimizing trainable parameters while maintaining Substantial
performance [30]. Fine-tuning too few parameters can restrict the model's adaptability to the target
task, while excessive fine-tuning can degrade the computational advantages of PEFT [9] [24]. The
success of PEFT also relies on the quality and quantity of data available, particularly in domains with
limited or noisy data where achieving the same accuracy as full fine-tuning can be tough. In such cases,
careful selection of data augmentation techniques and transfer learning strategies is important [8] [4].

3.1 Low Rank Adaptation (LoRA)

Low-Rank Adaptation [17], proposed by Hu et al. (2021), is a widely used Parameter-Efficient Fine-
Tuning approach aimed to optimize the adaptation of LLMs to specific tasks. During full fine-tuning,
the model is initialized to pre-trained weights Wy and updated to Wy + AW The basic hypothesis
behind LoRA is that during fine-tuning, A low-rank approximation can powerfully capture the necessary
adjustments to the model’s weights. This means that the changes in the weight matrix resulting from
task-specific adaptation have a low ”intrinsic rank” [1]. As shown in Figure 3 the information contained
within the AW matrix can be represented using fewer dimensions than the original matrix and therefore,
the full-dimensional update can be approximated by a product of two smaller matrices while keeping the
original weights frozen.
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Figure 1: Comparison between the traditional fine-tuning approach and the LoRA method

3.1.1 Mathematical Formulation

Considering a pre-trained weight matrix W of a neural network. During fine-tuning, instead of updating
W directly, LoRA introduces two trainable low-rank matrices A € R™*" and B € R"*". The weight
update is then formulated as :

Waupdatea =W + AW =W + AB (1)

Here, r is the rank, a hyperparameter that defines the dimensionality of the low-rank approximation.
Using this approach, the amount of trainable parameters is remarkably decreased, as only the matrices. A
and B need to be learned, while the original weight matrix W remains frozen. This makes the fine-tuning
process much more memory and computation efficient.

3.1.2 Reparametrization and Optimization

LoRA modifies the forward pass of the neural network by adding the low-rank update AW = AB to the
original output. Specifically, if the original output is h = Wyx , the updated output becomes:

Wupdated = Wox + AWz = Wox + ABzx (2)

In practice, during backpropagation, the frozen pre-trained weights W, remain untouched, and the loss is
only used to update the B and A matrices introduced by LoRA. A is initialized with a random Gaussian
distribution, while B is initialized to zero, ensuring that the initial value of AW is zero. The scaling
factor « is introduced to balance the contribution of AW during training, which is crucial for controlling
the impact of the low-rank updates and making sure that the fine-tuning process remains stable and
effective.

3.1.3 Applying LoRA to a Transformer

In a transformer architecture of an LLM, it is more common to apply LoRA to the attention layers
because they are computationally expensive and have a significant number of parameters, which makes
them the prime targets for parameter-efficient fine-tuning. However, it’s not limited to just attention
layers; it could also be applied to other layers like feed-forward networks.

LoRA allows the fine-tuning process to require fewer parameters and less computational power while
still achieving strong performance. However, as with many advancements in AI, researchers have re-
cently introduced other innovative alternatives and derivatives of LoRA, such as DoRA [23], LoRA+
[15], QA-LoRA [41], QLoRA [6], QDoRA [23], and DyLoRA [40], depending on the model architecture
itself and the area of focus.

3.2 Weight-Decomposed Low-Rank Adaptation (DoRA)

Weight-Decomposed Low-Rank Adaptation [23] was introduced and built on LoRA by introducing a
decomposition of the weight matrix into two components to fine tune them: magnitude and direction,
as illustrated in Figure 2. This decomposition separates the fine-tuning of these components, addressing
issues in LoRA to make subtle adjustments to weight directions while efficiently handling parameter
updates. The process behind DoRA is divided into two main steps. First, the weight matrix Wy from a
pretrained model is decomposed into two components:
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Figure 2: An overview of DoRA [23].

e Magnitude Vector m: This vector represents the norm or length of each column in the weight
matrix, capturing the scale information.

e Directional Matrix V: Where each column vector of the weight matrix is normalized by dividing
by its magnitude, keeping only the directional information.

Once the pretrained weights are decomposed, and given the substantial size of the directional component
in terms of parameters, LoRA is applied exclusively to the directional matrix V', and m is trained as it
is, which is feasible because it has just one dimension.

DoRA improves both the learning capacity and stability of LoRA, without causing any additional infer-
ence overhead. It enables fine-tuning a pretrained model in a way that is computationally efficient and
potentially more responsive to new data, maintaining the strengths of the original model while adapting
it to new tasks or datasets.

3.3 Quantized Low rank adaptation (QLoRA)

QLoRA reduces the memory footprint of LLMs by compressing weights from high-precision data types
such as 32-bit floating point to lower-precision formats such as 4-bit integers or NormalFloat, while
integrating trainable Low-Rank Adapters (LoRA) for fine-tuning. The pretrained weights remain frozen,
and only the LoRA parameters are updated, minimizing memory requirements. During computational
tasks, weights stored as 4-bit NormalFloat are dequantized to 16-bit BrainFloat (bfloat16) for both the
forward and backward passes. However, only the LoRA parameter's gradients are computed. QLoRA
achieves high-fidelity 4-bit fine tuning via two proposed techniques 4-bit NormalFloat (NF4) Quantization
and Double Quantization. Paged Optimizers were also introduced to prevent memory spikes during
gradient checkpointing from causing out-of-memory errors that have traditionally made fine tuning on a
single machine difficult for large models.

3.3.1 4-bit NormalFloat Quantization

The NormalFloat (NF) data type builds on Quantile Quantization [5] which is an information-theoretically
optimal data type that ensures each quantization bin has an equal number of values assigned from the
input tensor. Quantile quantization works by estimating the quantile of the input tensor through the
empirical cumulative distribution function. This technique helps compress model weights effectively, but
the process of quantile estimation is computationally expensive. Fast quantile approximation algorithms,
such as SRAM quantiles, help mitigate this cost, but approximation errors arise, especially for outliers,
which are often critical.

QLoRA addresses these issues by recognizing that pre-trained LLM weights typically follow a zero-
centered normal distribution with a standard deviation o . By transforming all weights to fit within
a fixed range (e.g., [—1,1]), accurate quantile estimation becomes feasible, eliminating the need for
computationally expensive approximation algorithms. The result is the 4-bit NormalFloat (NF4) data
type, which is specifically optimized for normally distributed data. It normalizes neural network weights
into this fixed range and quantizes them accordingly, enabling precise weight compression with minimal
performance loss.
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3.3.2 Double Quantization

A method that reduces the average memory footprint by quantizing the quantization constants [7]. This
saves approximately 0.37 bits per parameter, which translates to around 3 GB for a 65B model. It
further reduces the memory overhead of quantization constants. By quantizing both the model weights
and the quantization constants, QLoRA achieves higher memory efficiency without negatively impacting
model performance.

3.3.3 Paged Optimizers

Fine-tuning LLMs can also generate memory spikes, primarily when processing long sequences or large
mini-batches. QLoRA harnesses Paged Optimizers to handle these spikes efficiently, leveraging NVIDIA’s
unified memory system, which automatically transfers memory between the CPU and GPU. When the
GPU runs out of memory, data is paged to the CPU and then moved back to the GPU when needed. This
seamless paging mechanism guarantees that memory bottlenecks do not interrupt the training process,
allowing QLoRA to handle larger models and batch sizes with fewer resources.

3.4 Quantized Weight-Decomposed Low-Rank Adaptation (QDoRA)

QDoRA combines the memory efficiency of QLoRA with the DoRA fine-tuning. QDoRA leverages
quantization to compress weights into low-precision formats, significantly reducing memory footprint.
However, it goes further by incorporating weight decomposition, as seen in DoRA, to achieve more
granular optimization during fine-tuning. This allows QDoRA to maintain both high performance and
low computational requirements, making it suitable for fine tuning and training large models like Llama
3 on consumer-grade GPUs.

4 Methodology

In this work, we explore the performance of small-sized LLMs in Arabic-to-English machine translation,
focusing specifically on encoder-decoder-based architectures. Our research is based on two publicly
available LLMs on HuggingFace: the Arabic-focused AraT5v2 Base and the multilingual NLLB-200
distilled-600M models. To evaluate these models, we conducted experiments using the United Nations
Parallel Corpus [47] with AraT5v2 [10] and the OPUS-100 corpus [43] with NLLB-200 [38]. Our objective
was to evaluate the trade-offs between computational resource efficiency, such as GPU power consumption
and memory allocation, and translation performance using BLEU, and ROUGE and Perplexity scores,
without an explicit aim to improve translation quality. We applied four fine-tuning techniques in addition
to Full fine-tuning (which served as a baseline used for comparison): LoRA, DoRA, and quantized
variants: QLoRA and QDoRA.

4.1 Experiments on AraT5v2 with United Nations Parallel Corpus

We used the United Nations Parallel Corpus with the AraT5v2 model. We adopted the following dataset
splitting strategy to ensure a balanced and effective model training, validation, and testing. We started
by loading the first 20 000 examples from the corpus. The dataset was split as into:

e Training Set: 15,000 examples (75%) were dedicated to training, ensuring that most of the data is
used for model learning.

e Validation Set: 2,500 examples (12.5%) were reserved for validation. This validation set is used to
track the model’s performance on unseen data, serving it to prevent overfitting.

o Test Set: 2,500 examples (12.5%) were set aside for testing. The test set is used for the final
evaluation.

AraT5v2 built on a foundation set by the original AraT5 model [29]. AraT5 was inspired by the T5
(Text-to-Text Transfer Transformer) model [32], which reframes all NLP tasks into a text-to-text format,
offering a unified framework for language modeling tasks.

Tokenization is an important step in converting raw text into a format that a model like AraT5v2
can process. AraT5v2 relies on tokenized inputs for both the source language (Arabic) and the target
language (English).
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e Task-Specific Prefix: The T5 model needs a clear prompt of the task it is performing. In this case,
we prepend the Arabic input text with the prefix: "translate Arabic to English: ”

e Tokenization Using AraT5v2’s Tokenizer: We use Hugging Face’s AutoTokenizer to tokenize the
Arabic input sentences and their corresponding English translations. AutoTokenizer is a generic
tokenizer class in the Huggingface Transformers library that automatically selects the proper tok-
enizer for a given model. The original T5 models (including AraT5, which is based on T5) typically
use SentencePiece tokenizers [37], which is a text tokenization algorithm widely used in modern
NLP models, particularly in models that need to handle complex languages with rich morphology
(like Arabic). Unlike traditional tokenizers that split text based on spaces or punctuation, Senten-
cePiece treats the entire text as a continuous stream of characters and learns how to break it into
subword units.

e Truncation and Padding: To ensure that the input sequences fit within the model’s constraints,
we limit the maximum sequence length to 128 tokens. Sequences longer than this are truncated,
while shorter ones are padded to a uniform length. This ensures consistency across batches during
training.

The tokenized dataset consists of pairs of input and output sequences, where each sequence is a list of
tokens representing either an Arabic sentence (input) or its English translation (output). These tokenized
sequences are then ready for training the AraT5v2 model.

We fine tuned AraT5v2 using different approaches: Full fine-tuning, LoRA, DoRA, and QDoRA:

1. Full fine-tuning means updating all the parameters of the model based on the specific wanted task.
We defined several key hyperparameters (used for other techniques as well): Once the training setup

Table 1: Hyperparameters Used for Model Training

Learning rate 21071
Batch size 2
Number of

5
epochs

is complete, the model is trained on the training set by backpropagating through the entire model,
including all attention and feed-forward layers, updating every weight in the network. Training is
followed by evaluation on the validation set after each epoch to track its performance.

2. We used LoRA to fine-tune AraT5v2, focusing on the following layers involved in the attention
mechanism: the key (k), query (q), value (v), and output (o) layers. After freezing the core model
parameters, LoRA introduces learnable low-rank matrices that adjust the key, query, value, and
output layers of the attention mechanism. These matrices are updated during training, while the
original parameters remain untouched. The low-rank structure allows for efficient fine-tuning with
fewer parameters to update.

3. In another experiment we applied DoRA by freezing the original model parameters and decom-
posing the weight matrices involved in the key (k), query (q), value (v), and output (o) layers of
the attention mechanism. By applying DoRA to the Target Modules, we decomposed the weight
matrices associated with them into their magnitude and directional components. The fine-tuning
process updates the directional matrices using LoRA, while the magnitude vector is trained di-
rectly. After training, all the components are recombined to form the updated weight matrices
which is used for inference.

4. Lastly, QDoRA is applied to the AraT5v2 model by combining two techniques: quantization and
Weight Decomposed Low-Rank Adaptation (DoRA). We applied these techniques to the model
by quantizing the model’s weights to 4-bit precision, then freezing the core weights of the model
(from its pre-trained state), the Decomposition of Weights, LoRA is then applied specifically to the
directional matrices within the attention layers chosen, and alongside the updates to the directional
matrices, the magnitude vector (which represents the scale of the weights) is also fine-tuned. Since
the magnitude has significantly fewer parameters, it can be trained directly without requiring the
same low-rank approximations used for the directional matrices.

Table 3 summarizes the previous techniques.

96



4.2 Experiments on NLLB-200 with OPUS-100 Corpus

The NLLB-200 distilled-600M model was fine-tuned using the OPUS-100 dataset. We splitted the dataset
into model training, validation, and testing. We started by loading the first 11200 examples from the
corpus. The dataset splitting was done as following:

e Training Set: 8000 examples (71%) were dedicated to training.
e Validation Set: 1600 examples (almost 15%) were reserved for validation.
o Test Set: 1600 examples (almost 15%) were set aside for testing.

The NLLB-200-distilled-600M represents a distilled version of the full NLLB-200 model of 600 million
parameters. NLLB-200 is an innovative solution to the complex challenges of multilingual machine
translation, especially in low-resource languages.

We use a fast tokenizer NllbTokenizerFast to process the text, specifying Arabic as the source language
(srclang) and English as the target language (tgt_lang). It is based on the BytePairEncoding [31],
which preserves common words in their full form, while splitting less frequent words into subword units,
achieving a balance between vocabulary size and representational efficiency. The tokenizer also handles
truncation, ensuring that sentences are cut off at the model’s maximum input length to avoid issues
during training. By tokenizing the entire dataset, we prepare it for the subsequent steps.

Once the dataset is prepared, we move on to the fine-tuning stage:

1. Full fine-tuning allows all the layers of the model to be updated during training. The training
is configured controlling various aspects (same configuration for other fine tuning methods of the
model):

Table 2: Hyperparameters Used for Model Training

Learning rate 2.107°
Batch size 1
Number of

3
epochs

Evaluation is performed at the end of each epoch.

2. We applied LoRA where instead of updating all the model’s parameters, only the low-rank matrices
are updated during fine-tuning, which drastically reduces the number of parameters that need to
be trained. In our case, the target layers for LoRA are:Query projection (q-proj), Value projection
(V_proj). Only the low-rank matrices in the q_proj and v_proj layers are updated, while the rest of
the model remains frozen. This reduces the number of trainable parameters while retaining enough
capacity to specialize for the translation task.

3. In another experiment, we applied QLoRA which is an advanced version of the original LoRA
technique (same as QDoRA). QLoRA focuses on fine-tuning specific layers of the model; this
approach extends the benefits of LoRA by further reducing the model’s memory footprint through
quantization, while still fine-tuning only a small fraction of the model’s parameters. The core
difference in QLoRA is the use of 4-bit quantization that reduces memory requirements even further
while maintaining precision for computation.

4. In another experiment, DoRA was applied to fine-tune the NLLB-200 distilled 600M model for
Arabic to English translation. By introducing a decomposition of the weight matrix into magnitude
and direction, DoRA enhances the fine-tuning process. DoRA allows for independent updates to
the scale and directional aspects of the model’s weights. The directional matrix is fine-tuned using
LoRA’s low-rank matrices, while the magnitude vector is directly trained.

Table 4 summarizes these techniques.

4.3 Evaluation

To track CPU, GPU and Memory usage, we used Weights & Biases, a platform for machine learn-
ing developers to help them build better models faster. It provides lightweight, interoperable tools for
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Table 3: AraT5v2 Fine-Tuning Methods

Fine-Tuning | Parameters | Low-Rank Scaling Dropout Quantization | DoRA Full
Method Updated Dimension Factor (lora_dropout) Enabled | Parameters
(r) (lora_alpha) Updated
Full All - - - No No Yes
Fine-Tuning | Parameters
LoRA Attention 5 32 0.06 No No No
Layers (k, q,
v, 0)
DoRA Magnitude + 5 32 0.06 No Yes No
Direction
QDoRA Quantized + 5 32 0.06 Yes Yes No
Magnitude +
Direction
Table 4: NLLB200-600M Fine-Tuning Methods
Fine-Tuning | Parameters | Low-Rank Scaling Dropout Quantization | DoRA Full
Method Updated Dimension Factor (lora_dropout) Enabled | Parameters
(r) (lora_alpha) Updated
Full All - - - No No Yes
Fine-Tuning | Parameters
LoRA Attention 8 32 0.1 No No No
Layers (q,
v)
DoRA Magnitude + 8 32 0.1 No Yes No
Direction
QLoRA Quantized + 8 32 0.1 Yes No No
Attention
Layers (q,
v)

tracking experiments, versioning datasets and models, evaluating model performance, and visualizing
results.Additionally to the W&B system tracking, we evaluated the optimization techniques using Per-
plexity, that measures the model’s uncertainty in generating the next token, the lower the value the
better. In addition, we also used the following evaluation metrics: ROUGE-L, which measures the
overlap of longest common subsequences between the system output and reference texts, indicating the
quality of text summarization or other generation tasks. And SacreBLEU score, which is an extended
implementation that builds upon the basic BLEU metric and provides additional features, such as multi-
ple reference support, better handling of tokenization, and more fine-grained control over the evaluation
process.

5 Results and discussion

5.1 Models efficiency comparison

Using W&B SDK, we tracked system metrics for every technique on both chosen models.

5.1.1 AraT5v2 Base

In full fine tuning, all the parameters are trained and updated, while Table 5 presents trainable Param-
eters in the other techniques. Figures 3 and 4 araT5v2 variations showcase varying trade-offs between

Table 5: Comparison of the Trainable Parameters in AraT5v2

Optimization | Trainable Parameters | Total Parameters | Percentage of Trainable Parameters
LoRA 1,105,920 368,614,656 0.30%
DoRA 1,105,920 368,614,656 0.30%
QDoRA 1,216,512 368,725,248 0.33%

power consumption, speed, and resource usage. The full fine tuning of araT5v2 is the fastest, completing
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training in 2 hours but consumes high power (around 120W) due to its computational intensity. In con-
trast, araT5v2-Base-with-LoRA balances speed and resource efficiency, using moderate power (50-60W)
while finishing second fastest , making it suitable for scenarios where moderate optimization is needed
without heavy resource use. Although araT5v2-Base-with-DoRA was slower than full fine tuning and
LoRA, DoRA prioritizes power efficiency over speed by applying more optimized updates (magnitude
and direction), making it ideal when power usage is a concern and training time is flexible. Lastly,
araT5v2-Base-with-QDoRA is the most power-efficient (60W) but takes over 10 hours to train, which
makes it useful for resource-constrained settings where power efficiency is extremely crucial. GPU mem-

GPU Power Usage (W)
— araT5-Base-with-QDoRA araT5-Base-FFT = araT5-Base-with-DoRA — araT5-Base-with-LoRA e
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Figure 3: GPU power usage in Watt in araT5v2
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Figure 4: GPU power usage in % in araT5v2

ory directly impacts real-time performance, determining factors like batch size, computation speed, and
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whether the model can fit into memory. During fine-tuning, main components such as model parameters,
activations, gradients, and optimizer states are stored in GPU memory. Techniques like LoRA, QLoRA,
or QDoRA, which reduce the number of trainable parameters or use quantization, significantly lower
GPU memory consumption, allowing larger models to be fine-tuned on more affordable hardware. The
graph presented in Figure 5 shows GPU memory allocation, providing insight into how much memory
each finetuning method allocates during the training process. The araT5v2 variations exhibit varying

GPU Memory Allocated (bytes)

— araT5-Base-with-QDoRA araT5-Base-FFT = araT5-Base-with-DoRA araT5-Base-with-LoRA s
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Figure 5: GPU memory allocation in bytes in araT5v2

but stable memory usage based on their tuning strategies. Full fine tuning consumes the most GPU
memory (around 8 - 10° bytes) due to its full fine-tuning. LoRA uses less memory (around 3.74 - 10°
bytes) by fine-tuning low-rank weight matrices. DoRA is similar to LoRA, using around 4 - 10° bytes,
reflecting its efficient parameter updates. QDoRA has the lowest memory allocation (around 2-10° bytes)
due to fine-tuning applying quantization, but this results in slower training. Full fine tuning is best for
scenarios with abundant resources, while LoRA and DoRA balance memory efficiency and speed, making
them suitable for more constrained environments. QDoRA excels in memory and power efficiency but
sacrifices speed.

LLM's carbon footprint comes from energy consumption during training, primarily using GPUs,
highlighting the need for accurate impact assessments for environmental mitigation [19].The GPU tem-
perature graph in Figure 6 illustrates the energy efficiency of four models during training by tracking GPU
temperatures over time. AraT5v2-Base-with-QDoRA maintains a stable temperature around 44 — 48°C,
indicating steady, efficient GPU usage over 10 hours. AraT5v2 full fine tuning shows the highest tem-
perature spikes, peaking at 65°C during its fast 2-hour training, reflecting high power consumption and
a larger carbon footprint. QDoRA and LoRA had moderate temperatures, between 40 and 51 degrees ,
offering efficient GPU usage but slightly more power than LoRA. AraT5v2-Base-with-DoRA operates at
the lowest temperature of 36 — 37°C, making it the most energy-efficient model with the smallest envi-
ronmental impact. The graph in the Figure 7 below shows GPU utilization for the different techniques
applied on araT5v2 Base. The Full fine tuning peaks at 71%, reflecting again its high computational
intensity and fast training time of around 2 hours. In contrast, LoRA and DoRA demonstrate moderate
GPU utilization, with LoRA having quicker training than DoRA. Lastly, QDoRA operates between 27-
34%, with the longest training time, over 10 hours, prioritizing energy efficiency. Each variant balances
speed and resource consumption differently, with Full fine tuning being the fastest and QDoRA the most
power-efficient and the slowest.

All variations of araT5v2 show fluctuating CPU usage over time according to Figure 8, with peaks
reaching 100% utilization at various points, indicating varying computational intensity during different
phases of training, with full fine tuning finishes fast and QDoRA takes the longest period as shown
before. These techniques primarily affect the duration of CPU usage rather than the intensity of CPU
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Figure 6: GPU Temperature in araT5v2
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Figure 7: GPU Usage in % in araT5v2
utilization.

5.1.2 NLLB200 600M

The table 6 presents trainable Parameters in the other techniques, in full fine tuning, all the parameters
are trained and updated. We examined the trade-offs between GPU power consumption and training
speed for the NLLB200-600M model using different fine-tuning techniques. Full fine-tuning consumes
the most power, reaching up to 95%, but trains the fastest by updating all model parameters, making
it computationally intensive. LoRA uses the lowest power (40-50%) while having the slowest training
speed, making it more resource-efficient. DoRA, with power usage around 55-68%, is faster than LoRA
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Figure 8: System CPU Usage in % in araT5v2

Table 6: Comparison of trainable Parameters on NLLB200-600M

Optimization | Trainable Parameters | Total Parameters | Percentage of Trainable Parameters
LoRA 1,179,648 616,253,440 0.19%
DoRA 1,253,376 616,253,440 0.20%
QLoRA 1,179,648 616,253,440 0.19%

GPU Power Usage (%)
— NLLB_DoRA — NLLB_QLoRA = NLLB_LoRA = NLLB_full_finetuning
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Figure 9: GPU power consumption in % in NLLB200-600M

due to optimized parameter updates while still being more power-efficient than full fine-tuning. QLoRA,
despite leveraging quantization for memory efficiency, has high power consumption (82-97%) and requires
substantial GPU power at times. Overall, DoRA offers a better balance of power efficiency and speed,

102



GPU Power Usage (W)

= NLLB_DoRA = NLLB_LoRA = NLLB_full_finetuning s
70
60
50
40 Lmuvmm*m~w«w~mmwwmwwde~4~1
30
20
10
Time
0
5k 10k 15k 20k
Figure 10: GPU power consumption in Watt in NLLB200-600M
while full fine-tuning and QLoRA prioritizes speed at the cost of high resource use.
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Figure 11: GPU memory allocated in NLLB200-600M

The graph presented in Figure 11 shows the GPU memory allocation over time for various fine-
tuning methods of the NLLB200-600M model. Full fine-tuning consumes the most memory, peaking at
1.51- 107! bytes and remaining constant till the end of its training. DoRA and QLoRA exhibit gradual
memory increases, stabilizing at 1.09 - 10719 and 9.38 - 10%° bytes, respectively, making them more
memory efficient (especially QLoRA). LoRA also shows a gradual increase but experiences fluctuations
before stabilizing around 1.06 - 10710 bytes. Overall, QLoRA is notably the most memory efficient
technique, while LoRA shows some instability before leveling off, but takes more time training.

Figure 12 shows the GPU temperature over time for different training methods: The DoRA, QLoRA
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Figure 12: GPU temperature in NLLB200-600M

and full finetuning methods maintain a relatively high and stable temperature, hovering around 75—77°C.
There are minor fluctuations, but overall, the temperature remains steady. The LoRA method shows
more balance in temperature, ranging between 56 — 61°C |, with noticeable dips and rises. It operates
at a generally lower temperature compared to the other methods. The Figure 13 shows GPU utilization
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Figure 13: GPU utilization in NLLB200-600M

over time for different methods: Full fine tuning has high GPU utilization, often reaching around 78%.
There are occasional drops, but it generally maintains a high level of resource usage, indicating intensive
processing. QLoRA also shows relatively high utilization, fluctuating between 49% and 60% and DoRA
has moderate utilization, around 26%-35%, indicating a balanced approach between performance and
resource usage. LoRA shows the lowest GPU utilization, generally staying below 30%, reflecting a more
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optimized use of resources. In general, Full finetuning and QLoRA make the most aggressive use of GPU
resources.

System CPU Utilization (%)

Hh“‘ [ IH‘M HI '\

10k 15k 20k

Figure 14: System CPU utilization in NLLB200-600M

The graph in Figure 14 displays system CPU utilization over time for different methods: DoRA and

LoRA exhibit high variability with frequent spikes in CPU usage, often reaching above 80, this indicates
intensive CPU involvement and processing. QLoRA in Figure 15 maintains the most balanced CPU
utilization, with fewer and lower spikes. NLLB200-600M full finetuning displays low and most stable
CPU utilization. In total, DoRA and LoRA show more intensive and variable CPU usage, while QLoRA
and full finetuning use CPU resources more efficiently and steadily.
In a comparative analysis of fine-tuning methods across models, distinct trade-offs show up in terms of
performance, resource usage, and training efficiency. Full Fine-Tuning updates all model parameters,
making it the most computationally intensive approach. It achieves the fastest training speed but con-
sumes the most GPU power and memory, limiting its practicality in memory-constrained environments.
LoRA and DoRA, which fine-tune a smaller subset of parameters, and QLoRA, which also introduces
quantization to further reduce memory and computation demands, offer a compromise. They signif-
icantly reduce GPU memory consumption and power usage, with LoRA showing moderate memory
access. DoRA has slightly higher power usage than LoRA but converges faster in some cases, making it
ideal for scenarios where power efficiency is crucial but training speed remains important. QDoRA, which
introduces quantization to further reduce memory and computation demands, uses the least memory,
but the added quantization complexity causes occasional GPU power spikes and slower training speeds
compared to LoRA. This makes it suitable for extreme memory-constrained environments, regardless of
trade-off in speed and performance.

5.2 Translation Quality comparison
5.2.1 Evaluation metrics results

According to the following Bar chart :

Full Fine-Tuning achieves the highest ROUGEL and SacreBLEU scores compared to the other methods.
QDoRA and DoRA show nearly identical performance. LoRA shows a similar ROUGE score as DoRA
and QDoRA but seems to slightly underperform them in SacreBLEU and Perplexity. While Full Fine-
Tuning provides the best results, the gap between LoRA-based methods and Full Fine-Tuning is not
large. This reinforces the idea that LoRA-based methods offer a good balance between performance and
computational efficiency, especially when full fine-tuning is resource-prohibitive.
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Figure 15: NLLB200-600M-QLoRA system CPU utilization
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Figure 16: Bar Chart showing comparative araT5v2 Evaluation Using ROUGEL, SacreBLEU, in addi-
tion to Perplexity
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Figure 17: Bar Chart showing comparative NLLB200-600M Evaluation Using ROUGEL, SacreBLEU,
in addition to Perplexity

According to Figure 17, The full fine-tuning method starts at a higher ROUGEL and SacreBLEU
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scores and remains ahead of all parameter-efficient methods. DoRA and LoRA show almost identical
performance, with DoRA slightly edging out. QLoRA remains the lowest performer. The perplexity
shows that the uniformity of perplexity scores across all methods shown here is notable. It implies that,
in terms of understanding and predicting the structure of the target language, all methods are equally
effective.

Full fine-tuning offers the best evaluation scores results, but parameter-efficient methods like DoRA and
LoRA are closely following, suggesting they provide a competitive trade-off between performance and
resource usage.

5.2.2 Human evaluation results

In our inference tests, Arabic sentences were translated using AraT5v2 and compared with Google
Translate. For simple sentences, all fine-tuning methods (Table 7) performed similarly, showing that
lightweight techniques like LoRA and QDoRA can handle basic translations effectively. However, errors
in complex sentences - especially with idiomatic expressions - revealed significant limitations. Google
Translate generally outperformed the fine-tuned models in these cases, delivering more fluent transla-
tions, while the models often struggled with figurative language, producing more literal or incomplete
outputs.
Noticeably, some Arabic words remained untranslated across all fine-tuning methods, indicating gaps in
vocabulary handling. Full Fine-Tuning provided the best overall performance but occasionally overcom-
plicated translations, likely due to overfitting.
For NLLB200-600M (Table 8), all fine-tuning methods closely matched Google Translate on straightfor-
ward sentences but diverged on abstract phrases. Overall, Full Fine-Tuning excelled but was resource-
heavy, while LoRA and DoRA offered a balanced trade-off, and QLoRA proved best suited for extreme
memory constraints but was slower to converge.

Table 9 presents comparison between GP'T models BLEU scores and ours, due to hardware limitations,
we were unable to use similarly powerful models in our experiments, resulting in comparatively lower
performance to the results we presented in the related works.

6 Conclusion

This study explored the trade-offs between computational efficiency and Arabic-to-English translation
quality in LLMs, focusing on parameter-efficient fine-tuning techniques, particularly variations of LoRA.
While full fine-tuning showed optimal translation accuracy, LoRA and DoRA achieved comparable qual-
ity with reduced computational costs remarkably. QLoRA offered additional memory efficiency, though
at the expense of longer training time. Future work will explore scaling these methods to larger models
and enhancing their capacity to capture complex linguistic structures. All code and models are provided
in a GitHub repository as open source, editable Jupyter notebooks.
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Table 7

Translations generated by araT5v2
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diture to the time

Arabic original | DoRA Full fine tuning | LoRA QDoRA Google Trans-

text late

ol Oy 8 I have decidedto | | decided to | | decided to | | decided to | | decided to

o X change my jobto | change my job | change my job | change my job | change my job

5_5""'—“"5& find new oppor- | to seek new | to find new | to find new | to look for new

o “g tunities opportunities opportunities. opportunities. opportunities

S o

A The spend of | The cost esti- | The spend of | The printing of | The sword is
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Table 8

Translations generated by NLLB200-600M
Arabic original | DoRA Full fine tuning | LoRA QLoRA Google Trans-
text late
o Oy 8 I decided to | | decided to | | decided to | | decided to | | decided to

o N change jobs to | change jobs to | change jobs to | change jobs to | change my job
g“»‘hjj}; look for new | look for new | look for new | look for new | to look for new
o ;,..49 opportunities. opportunities opportunities. opportunities. opportunities
S o
;i...;.ll The sword | | The sword. | be- | | believe the | | believe the | The sword is

believe is a book | lieve a prophecy | sword is a book | sword is a book | more  truthful

) Sas]

narrative about | from a book | narrative about | narrative about | than books in
. Uf.)Q\ . the  boundary | alone about | the boundary | the boundary | its  sharpness,
S o? between grand- | the boundary | between grand- | between grand- | the line between
uy i) oA father and play. between serious- | father and play. father and play. seriousness and
1 ness and pla la
%A-;ou‘j :\%\ play play
ol The sword be- | The sword | The sword be- | Sword believes | The sword is
Al o] lieves prophecies | believed the | lieves prophecies | prophecies from | more  truthful
: from books | prophecies of | from books | books about | than books in its
3 u~Q\ o about the bound- | the books in | aboutthe bound- | the boundary | sharpness, the
U’U 2 ous ary between | the boundary | ary between | between grand- | limit between
- grandpa and | between grand- | grandfather and | father and play. seriousness and
V"’"U\j ad! play. father and play. play. play
Table 9

BLEU Scores for GPT Language Models compared to araT5v2 Base and NLLB200-600M

Model BLEU score
GPT-4 ~45
ChatGPT ~40
araT5v2 Full fine tuning 19.951
araT5v2 Full LoRA 12.531
araT5v2 Full DoRA 13.006
araT5v2 Full QDoRA

NLLB200-600M Full fine tuning 34.245
NLLB200-600M LoRA 32.676
NLLB200-600M DoRA

NLLB200-600M QLoRA 31.595
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Abstract

Evaluating collaborative practices for peers/groups of learners in collaborative e-learning is a
crucial issue in distance learning platforms. It is a complex task that requires the development of
advanced methods and tools to ensure continuous and real-time evaluation of collaboration. The aim
of our work is to propose and implement an algorithm, method, and tool for evaluating collaborative
learning. We seek to identify and extract collaborative fragments by applying operators to modeled
traces in order to pinpoint sequential episodes of collaboration. Additionally, we aim to design and
compute collaboration indicators. The objective of this work is to simplify the process of evaluating
a group of learners on a collaborative distance-learning platform, enabling non-computer scientists
to design their own collaboration indicators and automate their calculation.

Keywords:Collaborative e-learning, distance learning platforms, Sequential episodes of collabo-
ration, collaboration indicator.

1 Introduction

Distance learning platforms are environments that support, accompany, and validate learning, where
learners collaborate to achieve a common goal[13]. Collaborative e-learning, as a pedagogical approach,
relies on the sharing and construction of knowledge among learners using technology[11].

Collaboration is defined as ”the mutual engagement of participants in a coordinated effort to solve a
problem together”[20]. Cooperative work, on the other hand, ”is defined as a form of work organization
where each operator is responsible for his or her part. Collaborative work, in contrast, is a form of work
organization in which everyone is responsible for the whole”[8]. In e-learning, the term ’collaboration’
is generally preferred over ’cooperation,” despite both terms meaning 'working together.” The aim of
learning is not simply to complete a task collectively and produce a final product, but to ensure that all
learners achieve the same concepts and reach the desired objectives.

The main goal of collaborative learning is to enable a group of learners to work together through a
computer system to achieve a collaborative task. This task may involve completing a project, solving
an exercise, or understanding a concept. Collaboration can take the form of sharing, exchanging, or dis-
cussing information, ideas, and concepts, enabling learners to develop the cognitive skills and knowledge
necessary to enhance their competencies. According to [2], collaborative working increases employee pro-
ductivity and results in higher-quality outcomes. Moreover, regardless of their status, employees report
higher levels of satisfaction and responsiveness.

The lack of information about the level of collaboration within a group or between groups presents
challenges for teachers who wish to evaluate learners’ collaborative behavior. They must answer questions
such as: Who participates? Who doesn’t? Who helped whom? Who did what? These questions are
often difficult to answer when analyzing the dynamics of a collaborative group.

To understand the behavior of a learner or group of learners involved in e-learning, and to provide
relevant and adequate information to the teacher or trainer monitoring progress, whether globally or
individually, it is necessary to track traces. These traces can be defined as a set of temporally situated
elements.

1.1 Research Problem

The problem addressed in much of the research in related fields is how to evaluate the collaborative work
of one or more groups of learners on a collaborative e-learning platform.
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In the context of our work, several research questions were posed:
1. How can collaborative activities be detected within an e-learning platform?
2. How can these collaborative practices be evaluated?

The central problem concerns how to analyze the traces obtained during a collaborative learning
session in order to answer the above questions.

Our main contribution is to propose an algorithm, a method, models, and a tool for extracting and
evaluating collaborative practices through modeled traces.

1.2 Research Objectives

To achieve these results, we have set multiple objectives:

1. Proposing an algorithm for extracting sequential episodes of collaboration in order to identify
collaboration fragments.

2. Proposing an MDA-based method for calculating collaboration indicators.

3. Proposing a tool for the design and automatic calculation of collaboration indicators.

1.3 Paper Organization

To achieve the above objectives, the rest of the paper is organized as follows:
e The first part provides the theoretical framework for collaborative work and its evaluation.
e The second part presents our contribution and the proposed approach to achieving our goals.

e Finally, we conclude the paper with a summary of our work.

2 State of the Art

2.1 Computer-Assisted Collaborative Learning

Collaborative learning is a learner-centered approach in which students actively construct their knowl-
edge, with the instructor playing the role of facilitator. This model contrasts with the traditional
teacher-centered approach. The integration of Information and Communication Technologies (ICT) in
distance learning platforms has transformed pedagogy by fostering the emergence of collective learning
through tools such as forums, wikis, and blogs. These platforms overcome obstacles like physical distance
and learner diversity, enhancing collaboration and mutual support. The role of different actors (teachers,
tutors, and learners) is crucial for ensuring a conducive learning environment. This section explores the
advantages, limitations, and challenges associated with collaborative e-learning, with a particular focus
on the evaluation of collaboration to prevent isolation and improve learner engagement. It also dis-
cusses the definition of collaborative learning, the approaches to learning supported by distance learning
platforms, the roles of various actors in these learning environments, and the importance of evaluating
collaboration in an e-learning context.

2.1.1 Definition of Collaborative Learning

There are several approaches to learning, including traditional (teacher-centered) and collaborative
(learner-centered) approaches.

According to Henri and Lundgren-Cayrol[11], ” Collaborative learning is an active approach in which
the learner works to construct his or her own knowledge. The trainer plays the role of learning facilitator,
while the group participates as a source of information, a motivator, a means of mutual help and support,
and a privileged space for the collective construction of knowledge.”

In this type of learning, the learner takes responsibility for their own personal development and
engages in collaboration with group members to achieve a common goal—learning. Throughout this
process, collaboration within the group allows members to share, negotiate, and validate their newly
constructed knowledge.

114



2.1.2 Towards Collaborative Learning Supported by Distance Learning Platforms

The deployment of Information and Communication Technologies (ICT) in distance learning platforms
has brought about significant changes in pedagogy.

The variety of collaborative tools available on these platforms, such as forums, wikis, blogs, and others,
has fostered the emergence of collective learning. A collaborative learning environment supported by
a distance learning platform promotes the desire to exchange, communicate, and share, as well as to
participate and collaborate.

2.1.3 Actors in a Collaborative Learning Situation

In a collaborative learning environment supported by a distance learning platform, the following roles
are typically considered the main ones: teacher, IT designer, tutor, learner, and administrator[20].

2.1.4 The Role of the Tutor

The online tutor assumes various roles, such as coach, facilitator, instructor, and evaluator. They adopt
and implement strategies aligned with the learning/teaching paths chosen for the collaborative learning
situation. Additionally, they hold a supervisory role, supporting learners, stimulating learning, and
communicating rules within the learning environment[18].

2.1.5 Advantages of Collaborative E-Learning

In addition to the flexibility of time and place that collaborative e-learning offers to learners, it also
fosters cognitive and personal growth. Learners develop by working together toward a common goal[8].
In this collaborative learning process, the learner adapts to the benefits and demands of collaboration
and learns to use discussion and negotiation in their interactions with group members to build knowledge.

2.1.6 Limitations of Collaborative Learning

Despite the advantages of collaborative e-learning, there are several limitations to consider, whether
in terms of balance, heterogeneity, group size, or assessment procedures[8]. This work focuses more
specifically on the limitations related to assessment procedures.

2.1.7 Why We Should Evaluate Collaboration in an E-Learning Situation

One of the main problems with most e-learning platforms is student drop-out. A primary factor con-
tributing to this issue is the absence of support and social relationships, which can lead to feelings of
isolation.

2.2 [Evaluating Collaborative Processes

Evaluating the collaborative e-learning process is a delicate task that has prompted researchers to engage
in various theoretical and methodological investigations to address its challenges.

Before the discovery of the concept of M-traces, the description of elements stored during an e-
learning session was limited to textual documentation, such as log files or RSS feeds. This made human
exploitation of the data very challenging and almost impossible when dealing with large volumes of
interactions.

In 2006, Yannick Prié and his colleagues [21] introduced a new computer object called the ”M-trace”
(modeled trace), which associates each collection of observed elements with a model to formally describe
the structure and content of the trace.

2.3 Interaction Indicators

In the context of learning, the DPULS project[4] has provided a clearer definition of the concept of
an indicator: "It is a pedagogically significant variable, calculated or established using observed data,
that reflects the quality of interaction, activity, and learning.” Indeed, a collaboration indicator is one
that provides information on the level of participation, collaboration, and the degree of involvement of
learners in collaborative work.
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According to Djouad[6], each indicator has a name, a textual specification, and a calculation rule. As
shown in Figure 2, to arrive at the final value of an indicator, several stages must be considered: from
the collection of the necessary traces to their processing, to the formalization of the calculation methods,
and finally, to the visualization and interpretation of the data obtained. In all these stages, the central
step is the modeling and calculation of indicators.

I Collaborative e-learning situation |

Raw traces j

+
collect ] . -
[ ‘General process of indicator
calculation

[rentenced]
[ Indicator |

*
[ Elaboration of indicator_information ]

J'M ....... - l l
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a calibrated value

Create a guidance
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Figure 1: Indicator life cycle

3 Related work and scientific positioning

Recently, numerous studies have focused on evaluating the effectiveness of monitoring indicators in collab-
orative systems[22]. Integrating these evaluation metrics has proven valuable for tracking and enhancing
learner engagement in online environments, making them essential for adaptive and personalized learning
experiences[16].

In [17], the authors examine how automated analytics can assess collaboration skills by analyzing
group speech data. They analyze communication patterns, detect engagement levels, and identify col-
laboration dynamics in real time.

The ICALTS project [12] identified indicators through the analysis of students’ interactions at the
metacognitive level, which could help learners self-regulate or evaluate their activity. Similarly, in [3], the
authors proposed indicators to assess learning activity based on discussion forum posts. These indicators
are also used to validate the quality of asynchronous discussions without requiring an in-depth content
analysis.

In [5], the authors developed a mechanism allowing students to examine a collaborative task from
different perspectives. They proposed a set of metric-based indicators to evaluate the group’s output as
the final product of collaborative work. Meanwhile, in [9], researchers focused on calculating collabora-
tion indicators in Moodle by utilizing learning analytics and data mining techniques to define specific
collaboration indicators such as participation rate, interaction frequency, response time, message length,
and role distribution in group discussions.

In [14], specific algorithms were designed to extract and compute collaboration indicators within a
structured framework spanning multiple dimensions.

However, these indicators are often designed in an ad hoc manner and are typically tailored to a
specific platform, with little consideration for reusability.

A second category of research focuses on developing methods and tools to facilitate the design and
computation of collaboration indicators. The authors of [6] proposed a model-driven engineering ap-
proach to simplify the analysis of traces in learning situations. Their method involves saving the trans-
formations applied to the traces to facilitate their reuse, allowing the transition from raw trace data to
indicator models.

In [10], a computational tool called Genidic was developed to assist users in the development, man-
agement, and computation of indicators. It employs a rule-based system where traces serve as facts, and
indicator calculation processes are defined as rules. Similarly, [19] introduced Usage Tracking Language
(UTL), which allows the definition of indicators in a design pattern-like format to enhance capitalization
and reuse. However, UTL initially lacked formal tools to specify how indicators should be computed
from collected traces. To address this limitation, [15] proposed a new version called DCL4UTL, which
enables indicators to be modeled in a structured way that supports automation and reuse, providing
valuable insights for teachers and tutors.
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Other approaches rely on multi-agent systems. For example, [7] proposed a system based on fuzzy
logic techniques to evaluate the level of learner collaboration. The inputs to this system are calculated
indicators derived from trace analysis. Similarly, in [14], the authors developed a cloud-based Learning
Management System (LMS) that integrates a multi-agent system to collect, analyze, and filter traces,

facilitating the computation of interaction indicators that promote collaboration.
The below table 1 summarizes and compares the above work with our proposition.

The sug-
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Work supports Indicator Used approach entation sys-
the  design | type tem is open
/calculation or closed
of the indi-
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] ) Designing of indica-
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to a design pattern
Oriented Model
Transformation.
Indicators in
6] tTi‘(l)lr(i calcula- MOODLE based on MDE. Closed
platform Using an m-trace-
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Using a collabora-
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Table 1: The comparaison between related works and our proposition

Compared to the above works, our proposition considers the design and computation of collaborative
indicators in e-learning systems. Therefore, our approach can be summarized as follows:

e The first aspect focuses on the computation of collaboration indicators in e-learning systems, in-
dependently of any platform used. For this purpose, we propose to apply a model transformation
approach and an MDA-based process to obtain collaboration indicator models.

e The second aspect focuses on the design of collaboration indicators in e-learning systems. For this
purpose, we propose a formal model that facilitates the design of valid and meaningful collaboration
indicators according to the teacher’s observation needs.

e Based on the application development process supported by Model-Driven Architecture, the cal-
culation of the collaboration indicator can be seen as a model transformation process, where the
trace model is passed through a sequence of transformations to arrive at the collaboration indicator
model. For the same previous need of automatic computation of collaboration indicators and the
acquisition of specific computer skills that cannot be achieved by a non-computer scientist teacher,
we propose to automate the generation of sequences of transformations.

e The third aspect focuses on how to obtain sequences of transformations. For this, we will propose
a system that ensures the automatic generation of sequences of transformations to be applied in
the m-trace base system to arrive at the indicator model.
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4 Our Contribution

Our main objective is to propose an algorithm, a method, and a tool to facilitate the evaluation of
learners’ collaborative behavior in a collaborative learning environment.
To achieve this goal, our contribution will be divided into three main parts:

4.1 The first contribution

The first part of our contribution involves proposing an algorithm for extracting collaborative episodes
from a trace. The application of this algorithm will extract collaborative fragments within an interaction
trace. This algorithm will be:

e The first tool that teachers can use to detect the collaborative behavior of their learners, and

e Supported by statistical and mining functions to detect specific aspects of the trace, such as ex-
tracting frequent collaborative episodes, the number of frequent sequential episodes, etc.

The collaborative fragment extraction algorithm we propose is based on the frequent sequential episode
extraction algorithm, with the key difference that the result is a ”collaborative sequential episode.”
Let’s take the following example:

e Let the following trace be:

Obse'sT.‘*t A AOK®PX AN ®® O ALS

Time

e Let the collaboration obsels be:

A X X O

e Applying the frequent sequential episode extraction algorithm, we obtain the following frequent
episode with a seuil greater than or equal to 2:

A K¢

e Applying our method to propose, we’ll obtain the following episodes with a length greater than or
equal to 2:

e The calculation of collaboration indicators will be based on these results.

4.2 The Second Contribution

The second part of our contribution involves proposing an approach that enables non-computer-scientist
teachers to design and calculate their own collaboration indicators to detect and evaluate learners’
collaborative behavior in collaborative e-learning environments.

Our approach will be based on a model-driven architecture, where the calculation of indicators can
be seen as a series of model transformations. After the design stage, we aim to automate the calculation
of the teacher-designed indicators by automatically generating the transformation sequence needed to
obtain the corresponding indicator model.

4.3 The Third Contribution

The third part consists of proposing a real case study using a learning platform with an online collab-
orative learning situation and an evaluation grid to implement and adjust the proposed algorithms and
methods. This part is organized as follows:

1. Proposing a collaborative learning situation on a learning platform to collect the necessary data
interaction traces during collaborative learning sessions.
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2. Proposing a model for the concept of 'collaborative trace’ within the trace based system’KTBS’,
which will serve as an ontology for validating trace models.

3. Developing operators that facilitate the construction of collaborative traces, including a confidence
factor.

4. Implementing the evaluation algorithms and integrating several proposed indicators to assess the
collaborative learning process (Figure 2 summarizes these steps).

b <
= ‘. 1 i
r L ~ t— | >
e -

Collaborative e-learning activity|

Recording in the KTBS -
according to the collaborative | >
trace model to be proposed
E:ftrstctmn of collubumlmi Collaboration
p based on prop des
algorithm / cpisodes
Calculation of indicators’ _— Resultsready for
interpretation

Figure 2: Collaboration evaluation stage in a collaborative learning situation.

5 Conclusion

Collaborative distance learning represents a valuable approach for enhancing group work and developing
collaborative skills. After years of research, the interactions between learners using various distance
learning tools can be captured through a computer object called M-Trace.

In this research, we focused on evaluating collaborative practices within a learning activity. Our
first contribution is the development of an algorithm to detect and extract collaborative fragments from
interaction traces. By adapting the principle of frequent sequential episode extraction, we propose a
novel algorithm tailored to extract sequential episodes of collaboration.

The second contribution lies in evaluating collaborative practices. We propose a Model-Driven Ar-
chitecture (MDA )-based method to calculate collaboration indicators, coupled with a tool that enables
non-computer-scientist teachers to design meaningful collaboration indicators. This will allow teachers
to generate the transformation sequence necessary to obtain the corresponding collaboration indicator
model.

Finally, we plan to conduct a case study to further refine and adjust the evaluation algorithms. This
case study will help validate the proposed methods and tools, ensuring their practical applicability in
real-world educational settings.
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Abstract

The rapid integration of Internet of Things (IoT) technology in educational environments is revo-
lutionizing traditional pedagogies and institutional operations. This paper explores [oT’s role in aug-
menting educational delivery, enhancing resource management, and enabling personalized learning
through interconnected sensor-based infrastructures. It critically evaluates real-world deployments,
security and privacy implications, and future prospects within the smart education paradigm. A
multi-layered IoT architecture is proposed, and recommendations for sustainable adoption are dis-
cussed.
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1 Introduction

The Internet of Things (IoT) is experiencing growing adoption in the education sector, transforming
traditional learning environments into intelligent, interactive, and personalized ecosystems. Educational
IoT relies on an interconnected network of sensors, smart devices, and software platforms that collect and
process real-time data to optimize teaching and administrative processes. In a global context marked by
inequalities in access to education and accelerated digitalization, leveraging these technologies represents
a major opportunity to foster inclusivity, learner motivation, and academic performance. Recent studies
have explored the potential of IoT in education [1]. Among them, [2] demonstrates how a pilot project at
a Malaysian university led to a 23 percent improvement in energy efficiency while enhancing student en-
gagement through behavior-tracking sensors. Other studies [3], [4], [5] highlight the emergence of digital
twins, artificial emotional intelligence, and intelligent tutoring systems as drivers of pedagogical transfor-
mation. However, despite these advances, large-scale deployments of educational IoT remain limited and
often experimental. This study identifies a scientific gap in the systemic understanding of the conditions
for success, technical, ethical, and pedagogical challenges, and the evaluation criteria applicable to IoT
projects in higher education. The central issue revolves around the sustainable, inclusive, and ethical
integration of IoT technologies in educational institutions: How can we design and evaluate an educa-
tional IoT architecture that is both efficient, ethical, and adaptable to diverse pedagogical contexts? To
address this issue, an analytical and comparative approach has been adopted. This work is based on a
structured review of scientific literature, a critical analysis of international case studies, and the appli-
cation of multi-dimensional evaluation frameworks. Special attention is given to issues of security, data
governance, standardization, and scalability in resource-constrained contexts. The primary objective of
this study is to provide an in-depth synthesis of IoT architectures, applications, and emerging trends in
education, while identifying the technical, ethical, and organizational barriers that need to be overcome.
Through this approach, the study aims to enlighten academic decision-makers, instructional engineers,
and researchers on best practices for the design, deployment, and evaluation of connected educational
solutions.

2 10T Architecture for Smart Education

2.1 Layered Design

The architecture of the Internet of Things (IoT) in educational environments is commonly structured
into a layered model to streamline data flow and system interaction. This model generally consists of
three core layers: the perception layer, the network layer, and the application layer [6].
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2.1.1 Perception Layer

The perception layer serves as the foundational component of the IoT architecture. It includes various
smart sensing devices such as Near Field Communication (NFC) tags, Radio Frequency Identification
(RFID) systems, sensors, and cameras. These devices are responsible for gathering real-time data on
a wide range of educational metrics, including student attendance, physical movement, classroom envi-
ronmental conditions (like temperature and light), and device usage patterns. By collecting this data
at the source, the perception layer enables real-time monitoring and situational awareness within the
educational context. This visibility is instrumental in supporting responsive and adaptive educational
services that align with learners’ needs.

2.1.2 Network Layer

Next, the network layer is responsible for the secure and efficient transmission of the collected data
from the perception layer to the application layer. This layer utilizes multiple communication proto-
cols, including Zigbee, Wi-Fi, 5G, and LoRaWAN, depending on the specific network requirements and
constraints of the educational institution. The network layer not only ensures data transfer but also
addresses critical aspects such as latency, data packet loss, and bandwidth optimization. Secure com-
munication is prioritized through encryption and tunneling techniques, minimizing the risks associated
with data breaches or interception.

2.1.3 Application Layer

At the top of the stack, the application layer translates raw data into actionable insights tailored
for educators, administrative staff, and learners. This layer often employs edge computing or cloud-
based analytics to process and visualize data in user-friendly formats. Integration with existing Learning
Management Systems (LMS) is common, enabling a comprehensive digital learning ecosystem where
decision-making and educational customization are driven by real-time insights. Dashboards, reporting
tools, and Al-driven recommendation engines fall under this layer, offering tailored feedback to improve
both teaching and learning processes.

2.2 Interoperability and Middleware

Given the diverse and often incompatible nature of IoT devices and systems used in education, en-
suring interoperability is a significant challenge. Middleware platforms such as FIWARE and Kaa play
a pivotal role in addressing this issue [7]. These platforms act as intermediaries that harmonize com-
munication between heterogeneous devices and educational software applications. Middleware provides
standardized interfaces and APIs, which enable developers and administrators to integrate new hardware
and software without disrupting existing systems.

In addition to facilitating interoperability, middleware solutions enable context-awareness by under-
standing and adapting to the educational environment. For instance, middleware can interpret contextual
signals like user behavior patterns or environmental changes, helping the system respond dynamically to
varying scenarios. Furthermore, orchestration capabilities embedded in middleware platforms allow for
the automated coordination of processes, including device synchronization, data fusion, and event-driven
responses. As a result, middleware enhances the flexibility, scalability, and reliability of IoT imple-
mentations in educational settings, paving the way for seamless user experiences and efficient system
performance.

3 Key Applications of IoT in Education

3.1 Smart Classrooms

Smart classrooms represent one of the most tangible and transformative applications of IoT in ed-
ucation. These environments utilize a range of interconnected devices such as environmental sensors,
Al-powered dashboards, interactive displays, and intelligent control systems for lighting and air condi-
tioning. By continuously monitoring variables such as room temperature, humidity, noise levels, and
lighting, these systems help maintain optimal learning conditions.

Moreover, Al-driven analytics tools provide instructors with real-time insights into student engage-
ment and classroom dynamics. Teachers can adapt their instructional strategies on the fly—modifying
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pacing, introducing new materials, or adjusting classroom configurations based on data analytics [8].
Ultimately, smart classrooms enhance interactivity, engagement, and learner outcomes by creating an
environment that is both responsive and student-centered.

3.2 Attendance and Identity Verification

Traditional methods of tracking student attendance—manual roll calls or sign-in sheets are timecon-
suming and prone to errors. IoT technologies like RFID and biometric authentication systems revolu-
tionize this process by automating attendance tracking. Students equipped with RFID-enabled ID cards
or biometric markers (e.g., fingerprint or facial recognition) are identified upon entering the classroom,
and their presence is recorded in real-time [9].

This automation streamlines administrative tasks and allows teachers to focus on instructional du-
ties. Additionally, it enhances data accuracy, supports behavioral analytics, and contributes to the
development of personalized educational pathways. Integration with centralized school databases en-
sures seamless updating of attendance records and the generation of performance and behavior reports
for students and parents.

3.3 Adaptive Learning and Wearables

Wearable IoT devices, such as smartwatches, biometric bands, and augmented reality (AR) headsets,
are increasingly used to monitor learners’ physiological and emotional states. These devices can track
parameters such as heart rate variability, galvanic skin response, and motion patterns to infer cognitive
load and emotional engagement [10].

By feeding this data into adaptive learning systems, educational platforms can dynamically adjust
content difficulty, format, and delivery methods to match each learner’s needs and current state. For
example, if a student’s stress indicators are elevated, the system might recommend a break or switch to a
less cognitively demanding task. This personalization fosters more effective learning and helps mitigate
stress and burnout. Teachers also benefit from detailed analytics on student engagement trends, enabling
timely interventions and improved learner support.

3.4 Facility and Asset Management

Educational institutions manage a wide range of physical assets—from classroom equipment to cam-
pus infrastructure. IoT sensors embedded in furniture, audio-visual (AV) equipment, and utility systems
can provide continuous updates on usage patterns, operational status, and maintenance needs [11].

Real-time monitoring supports efficient allocation of resources and prevents downtime by enabling
predictive maintenance. For instance, a sensor-equipped projector may notify administrators of a po-
tential malfunction before it occurs, allowing for timely intervention. Furthermore, energy consumption
data gathered from HVAC systems or lighting fixtures can inform sustainability strategies, leading to
reduced operational costs and environmental impact.

3.5 Inclusive and Remote Learning

IoT technologies are instrumental in promoting inclusivity and accessibility in education. Assistive
devices such as Braille-enabled e-readers, hearing aids linked to classroom audio systems, and voicecon-
trolled learning applications ensure that students with disabilities have equitable access to educational
content [12].

Additionally, IoT-enabled remote learning solutions provide consistent and immersive experiences for
students learning outside the traditional classroom. Smart conferencing devices, Al-powered tutoring
systems, and collaborative platforms facilitate engagement and maintain the continuity of instruction.
These tools became particularly vital during the COVID-19 pandemic and continue to support hybrid
and distance learning models.

4 Security and Privacy Considerations

While IoT offers substantial benefits to the educational sector, it also introduces significant ethical,
privacy, and security challenges that must be addressed to ensure safe and responsible deployment.
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4.1 Data Privacy Risks

The use of IoT in education involves the collection of sensitive student data, including location
information, biometric identifiers, academic performance, and behavioral patterns. These data points
are vulnerable to unauthorized access, theft, or misuse if not properly safeguarded. To address these
concerns, institutions must adhere to data protection regulations such as the General Data Protection
Regulation (GDPR) in Europe and the Family Educational Rights and Privacy Act (FERPA) in the
United States [13].

Data anonymization, encryption, and strict access control mechanisms are essential to protect per-
sonal information. Additionally, transparency in data collection practices and obtaining informed consent
from students and guardians are critical steps toward ethical IoT usage.

4.2 Attack Surfaces

The proliferation of interconnected devices in educational environments increases the potential at-
tack surface for malicious actors. Common threats include Distributed Denial-of-Service (DDoS) attacks,
spoofing, unauthorized access, and malware infiltration. These threats are often exacerbated by inade-
quate encryption, unpatched firmware, and the use of outdated devices [14].

Attackers can exploit vulnerabilities to disrupt learning activities, steal confidential data, or gain
control over institutional infrastructure. As such, a proactive approach to cybersecurity—including
regular updates, threat monitoring, and penetration testing—is vital to safeguarding IoT systems.

4.3 Mitigation Strategies

To address these vulnerabilities, educational institutions can implement a range of mitigation strategies
aimed at enhancing security and trust in IoT deployments. Key approaches include:

- Lightweight Cryptography: Suitable for resource-constrained IoT devices, lightweight cryptographic
algorithms ensure data confidentiality and integrity without overloading system resources.

- Network Segmentation via SDN: Software Defined Networking (SDN) allows for dynamic network
segmentation, reducing the spread of attacks and enabling granular access control.

- Blockchain-Based Audit Trails: Blockchain technology can be employed to create immutable logs
of data access and transactions, promoting transparency and accountability [15].
By adopting a security-by-design philosophy and continuously evaluating emerging threats, institutions
can harness the full potential of IoT while maintaining ethical standards and legal compliance in educa-
tional contexts.

5 Critical Evaluation of Case Studies

A comparative analysis of IoT deployments across various universities reveals several key success factors
that shape the effectiveness of these systems.

Firstly, the integration of Localized Edge Computing significantly reduces latency, ensuring real-
time responsiveness in applications such as behavioral feedback systems and adaptive learning tools.
Rather than sending all data to a centralized cloud, local edge devices process and respond to data closer
to the source, minimizing delays and conserving bandwidth.

Secondly, faculty training in IoT ethics and data governance emerges as a critical component.
Successful IoT adoption hinges not only on technological readiness but also on the awareness and ethical
responsibility of educators. Institutions that incorporate data governance training and ethics workshops
are better equipped to manage privacy concerns and ensure equitable student treatment.

Thirdly, universities are increasingly implementing hybrid infrastructures that combine cloud
and fog computing. This architecture helps balance the scalability and computational power of cloud
platforms with the responsiveness and localized processing offered by fog nodes. Such systems allow for
seamless data management while upholding student privacy and adapting to network constraints.

In [15], a notable case study conducted at a Malaysian university showcased the practical benefits
of such strategies. The pilot project implemented sensor-based behavioral feedback mechanisms to
encourage energy-saving behaviors among students. As a result, energy efficiency improved by 23 percent.
Furthermore, the interactive feedback loop—facilitated by IoT devices and dashboards—boosted student
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participation, underscoring how well-designed IoT systems can influence not only operational metrics but
also learner engagement and institutional culture.

6 Emerging Trends and Out-of-the-Box Applications

6.1 Cognitive IoT and Al

The convergence of Artificial Intelligence (AI) and IoT, commonly referred to as AIoT, is driving inno-
vation in personalized learning. Intelligent tutoring systems now incorporate Al algorithms—particularly
reinforcement learning—to tailor quiz difficulty and content delivery based on real-time assessments of
student performance and behavior. These systems dynamically adapt to individual learning curves,
offering more precise and motivating educational experiences.

6.2 Digital Twins for Learning

A particularly novel development is the use of digital twins—virtual counterparts of physical learn-
ing environments. These digital replicas, enabled by IoT and immersive technologies such as Augmented
Reality (AR) and Virtual Reality (VR), allow remote learners to engage with classroom environments in
real-time. Students can interact with virtual lab equipment, observe real-world classroom dynamics, or
even participate in collaborative activities via avatars. This concept redefines remote learning by making
it more experiential and presence-driven [2].

6.3 Gamification and Emotional Al

Another frontier in educational IoT is the blending of gamification techniques with emotional AI.
ToT devices such as smart cameras or wearable sensors can detect emotional cues like facial expressions,
vocal tone, or physiological stress markers. These inputs feed into gamified learning systems that adjust
tasks, difficulty levels, or feedback styles to maintain engagement and motivation. For instance, if a
student appears frustrated, the system might reduce task complexity or offer encouraging prompts. The
combination of real-time emotion recognition and motivational design principles fosters deeper learner
immersion and satisfaction [3].

7 Methodological Framework for IoT Evaluation in Education

A robust evaluation of IoT deployments in education requires a multi-dimensional framework that
integrates both technical performance and educational outcomes. Four primary metric categories are
recommended:

e Technical KPIs: Metrics such as latency, throughput, and device uptime assess the operational
efficiency of ToT systems.

e Pedagogical Metrics: These include indicators like student engagement rates, retention, learning
gains, and academic performance improvements.

e Usability Metrics: These gauge system intuitiveness, ease of navigation, and user satisfaction,
particularly among faculty and students.

e Socio-Ethical Metrics: Inclusivity, equity, transparency in data use, and adherence to ethical stan-
dards fall under this category.

To gather these metrics effectively, a mixed-method research approach is advised. Quantitative data
from system logs and user analytics can be complemented by qualitative feedback collected via surveys,
interviews, and classroom observations. Longitudinal studies, in particular, are crucial to understanding
the sustained impact of IoT systems on learning outcomes and educational equity [4].

8 Challenges and Future Directions

8.1 Scalability vs. Affordability

One of the primary barriers to widespread IoT adoption in education is the cost of deployment—
particularly in low-resource settings. To address this, institutions are turning to cost-effective, open-
source hardware platforms such as Raspberry Pi, Arduino, and ESP32. These devices support
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essential IoT functionalities while minimizing financial strain. Moreover, optimized firmware and modular
architectures can extend device lifespans and reduce maintenance requirements.

8.2 Standardization

Another significant challenge is the lack of unified standards for educational IoT systems. This
hampers interoperability, making it difficult for institutions to integrate heterogeneous devices and plat-
forms. Initiatives such as oneM2M and IEEE P2413 are working toward global IoT standards, but
adaptation for academic use remains in early stages [16]. Collaborative efforts among universities, in-
dustry, and standards bodies are necessary to accelerate this process and promote compatibility

8.3 Ethical Pedagogical Design

Finally, as educational technologies become increasingly data-driven, there is a growing need for
ethical pedagogical frameworks. IoT-based learning systems must not only be efficient but also
aligned with human-centered values. This includes ensuring informed consent, fostering inclusive design,
andresisting over-surveillance. Educators and technologists should co-create curricula and systems that
prioritize students’ well-being, autonomy, and equitable access to learning opportunities.

9 Conclusion

The Internet of Things holds transformative potential for the education sector by enabling smart, re-
sponsive, and personalized learning environments. However, its integration is not without challenges.
Success depends on well-designed system architecture, robust ethical governance, and collaborative in-
novation among educators, technologists, and policymakers. As educational institutions embrace IoT,
they must remain vigilant about issues of equity, privacy, and long-term sustainability. Future research
should focus on human-centered design, ethical standards, and scalable frameworks to ensure IoT serves
as a tool for inclusive and impactful education worldwide.
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Abstract

Large Language Models (LLMs) have transformed the landscape of natural language processing,
enabling significant application advancements. However, LLMs’ inherent complexity and opacity
raise critical concerns regarding their trustworthiness, including bias, misinformation, and lack of
interpretability. This paper presents a comprehensive state-of-the-art review on the integration of
knowledge graphs (KGs) to enhance trust in LLMs. We explore how KGs can serve as structured
frameworks for contextualizing the knowledge embedded in LLMs, providing a means to verify and
validate their outputs against reliable sources of information. The review highlights various method-
ologies that leverage KGs to address trust-related challenges in LLMs, including mechanisms for
improving factual consistency, reducing biases, and enhancing interpretability. Additionally, we an-
alyze recent advancements and empirical studies that demonstrate the efficacy of knowledge graph
integration in fostering transparency and reliability in LLM applications. By synthesizing the current
landscape of research, this paper aims to identify future directions and key challenges in developing
trust-aware systems that utilize the synergistic potential of LLMs and knowledge graphs.

Keywords: LLMs, Trustworthiness, Knowledge graph, NLP, reliability.

1 Introduction

The rapid advancement of Large Language Models (LLMs), such as OpenADl’s GPT-3 and Google’s
BERT, has revolutionized the field of natural language processing (NLP) by enabling sophisticated text
generation, comprehension, and interaction capabilities [3, 6]. Despite their impressive performance,
significant concerns regarding the trustworthiness of these models have emerged. Issues such as inher-
ent biases, the propensity to generate misleading or factually incorrect information, and the lack of
interpretability challenge their deployment in sensitive applications [2, 9].

Trust is essential in Al systems, particularly in applications involving critical decision-making, such as
healthcare, finance, and law. Users need to rely on the outputs of these models, necessitating a framework
that can ensure reliability and transparency. Knowledge graphs (KGs), which represent knowledge in a
structured format through entities and their relationships, offer a promising solution for enhancing the
trustworthiness of LLMs. KGs can provide contextual information, facilitate the verification of facts,
and support the interpretation of model outputs, thereby addressing some of the primary trust-related
concerns associated with LLMs [16].

Recent research has explored various ways to integrate KGs with LLMs, highlighting their potential
to mitigate issues such as misinformation and bias by providing a robust knowledge base against which
LLM outputs can be validated [22]. For instance, KGs can serve as sources of grounding information,
enabling LLMs to generate more contextually accurate responses [25]. Furthermore, KGs can enhance
model interpretability by elucidating the reasoning behind generated outputs and demonstrating the
relationships between concepts [8].

This paper aims to provide a comprehensive review of the current state of research on trust in
LLMs, focusing specifically on the integration of knowledge graphs. We will examine the methodologies
employed, their effectiveness in enhancing trust, and the challenges that remain in this evolving field.
The paper is structured as follows: first, we explore the concept of trust in LLMs, followed by an overview
of approaches using knowledge graphs within LLMs. Next, we review related work, present a discussion
on key insights, and outline challenges and future directions. Finally, we conclude with a summary of
the findings.
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2 Understanding Trust in LLMs

As large language models (LLMs) such as GPT, BERT, and T5 become increasingly embedded in ap-
plications affecting daily life, fostering user trust in these models has become crucial. Trust in LLMs
rests on several key factors—transparency, reliability, accountability, and interpretability. Each of these
elements contributes uniquely to how users perceive, rely on, and interact with LLMs.

2.1 Transparency

Transparency refers to the model’s ability to reveal its internal workings, data sources, and decision-
making processes. In LLMs, transparency encompasses both the interpretability of the model architec-
ture and the visibility of the training data. Transparent LLMs allow users and developers to understand
the source of the information, the decisions the model makes, and its reasoning process. For exam-
ple, the work by Piktus et al. [17] on explaining machine learning classifiers provides insight into how
interpretability methods can make black-box models more transparent by offering understandable expla-
nations for predictions. Efforts toward transparency often involve open-sourcing datasets and providing
documentation, such as Google’s Model Cards [14], which standardize model reporting to include infor-
mation about intended use cases, biases, and limitations.

2.2 Reliability

Reliability reflects the consistency and accuracy of an LLM’s performance across various tasks and con-
texts. Users are more likely to trust models that yield accurate and reproducible results, especially when
deployed in high-stakes areas such as healthcare or legal domains. For instance, studies on adversarial
robustness by Jia & Liang [21] illustrate that LLMs may be vulnerable to small changes in input data,
which can lead to unreliable or erroneous outputs. Addressing these issues, some approaches focus on
adversarial training and robustness testing to ensure that LLMs perform reliably under diverse conditions
[23]. Reliable models thus bolster user trust by providing stable and dependable outcomes.

2.3 Accountability

Accountability in LLMs relates to the capacity for tracing and attributing the model’s outputs to its
developers or the data it was trained on. Given the wide-reaching influence of LLM-generated content,
accountability becomes essential for maintaining public trust and mitigating risks associated with biased
or harmful outputs. Studies on responsible AI, such as the work by Binns [20], emphasize the need
for accountability mechanisms to ensure that LLMs can be held answerable for their outputs, particu-
larly when they affect individuals or communities. Additionally, frameworks like ”explainable artificial
intelligence” (XAI) aim to create models that produce both understandable and accountable outputs,
contributing to responsible and trustable AI [4].

2.4 Interpretability

Interpretability is crucial for understanding and trusting LLMs, as it determines how easily a human
can make sense of a model’s predictions. In natural language processing, interpretability approaches
such as attention visualization [7] provide insights into which parts of the input data an LLM considers
most relevant for making predictions. Techniques like Local Interpretable Model-agnostic Explanations
(LIME) [27] further support interpretability by explaining individual predictions and model behavior.
Interpretable models empower users to verify the model’s reasoning and assess its appropriateness in
specific contexts, thus enhancing trust.

These four factors—transparency, reliability, accountability, and interpretability—are interdependent
and collectively contribute to building and maintaining user trust in LLMs. Ongoing research in each
area aims to advance these dimensions of trustworthiness, bringing us closer to Al systems that users
feel confident in adopting and integrating into decision-making processes.
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3 Trust in LLMs with Knowledge Graph

3.1 Definition of Knowledge Graphs

Knowledge Graphs (KGs) are structured representations of real-world entities, their attributes, and the
relationships between them. Typically organized in a graph format, KGs enable machines to model and
reason about domain-specific knowledge by connecting data points through edges representing mean-
ingful relations [5]. They consist of nodes (entities) and edges (relationships) that create a network of
interconnected information, thereby facilitating structured queries and efficient knowledge retrieval [18].
KGs are increasingly used with large language models (LLMs) to provide a structured and interpretable
backbone for enhancing reasoning and factual correctness.

3.2 Enhancing Trust with Knowledge Graphs

Integrating KGs with LLMs can significantly improve transparency and interpretability by providing
factual grounding and context for LLM responses. KGs serve as external sources of structured information
that can back model predictions, enhancing user trust. By linking facts to entities in a KG, LLMs
can provide evidence for their responses, making the output more transparent and understandable for
users [26]. For instance, grounding an LLM’s responses with Wikipedia-derived KGs allows for entity
resolution, where references in the model’s output can directly link back to a KG entity, thus verifying
the source of the information [11]. This grounding ensures that users can trace the origin of certain
statements, thus increasing the system’s transparency.

3.3 Examples and Techniques

To enhance trust in large language models (LLMs) using knowledge graphs (KGs), several techniques
and examples can be employed:

1. KG-Enhanced LLM Interpretability: By integrating KGs into the inference process of LLMs,
researchers can improve the interpretability of the model’s outputs. For instance, when an LLM
generates a response, the relevant facts from the KG can be highlighted to show the basis for the
generated information. This transparency helps users understand how the model arrived at its
conclusions, thereby increasing trust.

2. Factual Verification: Techniques such as LLM-facteval can be used to automatically generate
probing questions from KGs. These questions can then be used to evaluate the factual knowledge
stored in LLMs. By systematically assessing the accuracy of the information provided by LLMs
against a trusted KG, users can gain confidence in the model’s reliability.

3. Grounding Responses in KGs: Approaches like KagNet and QA-GNN ground the results
generated by LLMs at each reasoning step using KGs. This means that the reasoning process is
made explicit by linking the generated outputs to specific entities and relationships in the KG.
Such grounding provides a clear rationale for the model’s responses, enhancing user trust.

4. Knowledge Graph-Based Probing: Tools like BioLAMA and MedLAMA utilize domain-
specific KGs to probe LLMs for factual knowledge in specialized fields, such as medicine. By
evaluating the model’s performance against a trusted medical KG, these techniques can help en-
sure that the LLM provides accurate and reliable information in critical applications.

5. Instruction-Tuning with KGs: Integrating KGs into the training objectives of LLMs can help
improve their factual accuracy. For example, instruction-tuning methods can be employed where
LLMs are trained to generate responses that align with the structured knowledge in KGs. This
technique can help reduce the occurrence of hallucinations and improve the overall trustworthiness
of the model [16].

4 Related Works

The integration of Large Language Models (LLMs) with Knowledge Graphs (KGs) has become a sig-
nificant area of research, focusing on enhancing the capabilities of LLMs in terms of factual accuracy,
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reasoning, and trustworthiness. This section reviews notable works in this domain and proposes a tax-
onomy based on their contributions.

We propose a taxonomy to categorize integration approaches of LLMs and KGs, comprising three
main dimensions: Type of Integration, Focus Area, and Application Domain. This structured framework
helps in understanding the diverse methodologies within LLM and KG integration.

4.1 Performance Evaluation of LLMs

Yang et al. [24] discuss the integration of knowledge graphs (KGs) with large language models (LLMs) to
improve their ability to recall and utilize factual knowledge. The authors highlight that while LLMs like
ChatGPT exhibit impressive conversational abilities, they struggle with generating knowledge-grounded
content due to limitations in factual recall. To address this, the paper reviews existing methods for
enhancing pre-trained language models (PLMs) with KGs and proposes the development of knowledge
graph-enhanced large language models (KGLLMs).

Hou et al. [10] examine the limitations of LLMs in biomedical contexts, where accuracy is crucial.
The methodology involved conducting experiments where ChatGPT answered questions from the ” Al-
ternative Medicine” sub-category of Yahoo! Answers, while BKGs were queried for relevant knowledge
records. Additionally, a prediction scenario was created to evaluate the models’ abilities to suggest po-
tential drug and dietary supplement repurposing candidates for Alzheimer’s Disease (AD). The results
indicated that while ChatGPT (especially GPT-4) outperformed earlier versions and provided existing
information effectively, BKGs demonstrated higher reliability and accuracy. ChatGPT struggled with
novel discoveries and reasoning, particularly in establishing structured links between entities.

4.2 Trustworthiness and Credibility in LLM Outputs

Dr. Carlo Lipizzi [13] presents a novel approach to evaluating the trustworthiness of Large Language
Models (LLMs) by integrating knowledge graphs, RDF triplets, and a human-in-the-loop system. It em-
phasizes the importance of accurately representing domain-specific knowledge through knowledge graphs
and involves subject matter experts (SMEs) to validate this representation and assess the compatibility
of LLM outputs with established knowledge. By focusing on quantitative measures of trustworthiness,
the proposed system aims to address the growing concerns regarding the reliability of LLMs, particularly
in critical applications. The paper highlights the innovative nature of this approach while acknowledging
challenges such as subjectivity, scalability, and the complexity of knowledge representation.

Zhang et al. [28] investigate how KGs can enhance the factual recall of LLMs, addressing challenges
in integrating various data representations to improve output accuracy.

4.3 Type of Integration

The integration strategies can be categorized based on their timing and methodology:

e Before-Training Enhancement: Zafar et al. [26] present a novel architecture that integrates
large language models (LLMs), knowledge graphs (KGs), and role-based access control (RBAC) to
enhance the capabilities of conversational Al systems. It highlights the importance of combining
the linguistic proficiency of LLMs with the structured knowledge representation of KGs to address
challenges such as explainability, data privacy, and contextual accuracy. The architecture aims to
foster user trust and ensure the ethical use of AI technologies. Additionally, the paper introduces
LLMXplorer, a comprehensive tool for evaluating various LLMs, which contributes to transparency
and informed decision-making in the deployment of conversational Al.

o Post-Training Enhancement: Li et al. [12] introduce XTRUST, the first comprehensive bench-
mark designed to evaluate the multilingual trustworthiness of large language models (LLMs). The
authors highlight the remarkable capabilities of LLMs in various natural language processing (NLP)
tasks and emphasize the growing concern regarding their trustworthiness, especially in sensitive
fields such as healthcare and finance. XTRUST encompasses a wide range of topics, including
illegal activities, hallucination, out-of-distribution robustness, mental and physical health, toxicity,
fairness, misinformation, privacy, and machine ethics, across ten different languages. The paper
presents an empirical evaluation of five widely used LLMs, revealing that many struggle with low-
resource languages like Arabic and Russian, indicating significant room for improvement in their
multilingual trustworthiness.
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Alghamdi et al. [1] develop AraTrust, a trustworthiness benchmark for Arabic LLMs. The paper
introduces AraTrust, the first comprehensive benchmark designed to assess the trustworthiness of
Large Language Models (LLMs) specifically for the Arabic language. It comprises 516 human-
written multiple-choice questions that cover eight critical categories of trustworthiness: truthful-
ness, ethics, physical health, mental health, unfairness, illegal activities, privacy, and offensive
language. The authors highlight the inadequacies of existing English-centric benchmarks, which
fail to address the unique cultural and contextual factors relevant to Arabic users. By providing a
culturally aligned and automated assessment framework, AraTrust aims to enhance the safety and
reliability of Arabic LLMs and promote further research in this area. The findings indicate that
while proprietary models like GPT-4 perform well, many open-source models struggle to meet the
benchmark’s standards, underscoring the need for improved trustworthiness in Arabic LLMs.

e Real-time Enhancement: Large language models (LLMs) have achieved impressive results across
various natural language processing tasks. However, once deployed, LLMs interact with users who
possess personalized factual knowledge, which is reflected in their interactions. To enhance the user
experience, it is crucial to implement real-time model personalization that allows LLMs to adapt
user-specific knowledge based on feedback received during these interactions.

Current methods primarily rely on back-propagation to fine-tune model parameters, leading to sig-
nificant computational and memory overhead. Additionally, these methods often lack interpretabil-
ity, which can negatively affect model performance as users accumulate personalized knowledge over
time.

To tackle these challenges, we introduce Knowledge Graph Tuning (KGT), a novel approach
that utilizes knowledge graphs (KGs) to personalize LLMs. KGT extracts personalized factual
knowledge triples from user queries and feedback, optimizing the KGs without altering the LLM
parameters. This method enhances computational and memory efficiency by circumventing back-
propagation while ensuring interpretability by making KG adjustments understandable to humans.

Experiments with state-of-the-art LLMs, including GPT-2, Llama2, and Llama3, demonstrate that
KGT significantly enhances personalization performance while reducing latency and GPU memory
usage. In conclusion, KGT presents a promising solution for effective, efficient, and interpretable
real-time LLM personalization during user interactions [19].

4.4 Focus Area

The focus of these studies can also be categorized based on their objectives:

e Factual Recall: Hou et al. [10] reveal strengths and weaknesses in information retrieval for LLMs.

e Trustworthiness Assessment: Lipizzi [13] emphasizes the importance of validation mechanisms
for LLM outputs.

o Model Personalization: Sun et al. [19] introduces KGT to enhance real-time model personal-
ization using KGs.
4.5 Application Domain

The studies vary in their application domains:

e General Knowledge: Zafar et al. [26] and Kommineni et al. explore integration methodologies
to enhance conversational Al systems.

¢ Biomedical Research: Hou et al. [10] address factual recall challenges in biomedical contexts.

e Domain-Specific Applications: Li et al. [12] and Alghamdi et al. [1] focus on trustworthiness
in healthcare and Arabic language contexts.

Future research should develop efficient integration methodologies that enhance factual grounding
while considering computational efficiency.
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Table 1: Summary of Related Works on LLMs and KGs Integration
Referenceg Type of | Focus Key Con-
Integra- | Area tributions
tion
Yang et | Before- Factual KG-

al. [24] Training | Recall enhanced
LLMs for
improved
factual recall
Hou et al. | Post- Factual Comparison
[10] Training | Recall of ChatGPT
and BKGs in
biomedical
contexts
Zafar et | Before- Trustworthinke&Ms  and
al. [26] Training KGs  inte-
gration for
conversa-
tional AT

Li et al. | Post- Trustworthin¥sERUST
[12] Training benchmark
for multilin-
gual LLMs
Alghamdi | Post- TrustworthinAsa Trust

et al. [1] | Training benchmark
for  Arabic
LLMs
Lipizzi et | Real-time | Trustworthindssman-in-
al. [13] the-loop

for trust
assessment
in LLMs

Sun et al. | Real-time | Model KGT for
[19] Personal- | personalized
ization LLMs using
KGs

5 Discussion

The integration of Large Language Models (LLMs) with Knowledge Graphs (KGs) represents a trans-
formative approach to enhancing the capabilities of Al systems, particularly in domains requiring high
accuracy and trust. The reviewed methods showcase significant advancements in the factual recall and
reasoning abilities of LLMs, highlighting how structured knowledge representations can mitigate the
inherent limitations of these models. For instance, studies by Yang et al. [24] and Hou et al. [10] demon-
strate that KGs not only improve information retrieval but also facilitate more contextually relevant
outputs, particularly in specialized fields such as biomedical research.

Zafar et al. [26] emphasize the comprehensive integration of LLMs and KGs, which enhances ex-
plainability and data privacy through robust access control measures, while also allowing for iterative
learning and practical applications in real-world scenarios. However, the architecture’s generalizability
remains limited as it has predominantly been tested within specific contexts, like media and journalism,
raising questions about its performance across diverse industries. Similarly, Li et al. [12] present the
XTRUST benchmark, addressing the critical gap in multilingual LLM evaluations and underscoring the
importance of trustworthiness in sensitive domains such as healthcare and finance. Yet, their evaluation
of only five widely used models and a limited scope of languages may restrict the findings’ applicability.

Alghamdi et al. [1] highlights the structured representation of knowledge in KGs, enhancing contex-
tual understanding and facilitating reasoning, but they also point out challenges related to data quality,
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scalability, and user acceptance, which can undermine trust. Furthermore, approaches focusing on trust-
worthiness, such as those proposed by Lipizzi et al. [13], underscore the necessity of integrating human
expertise and domain-specific knowledge to assess and enhance the reliability of LLMs.

Despite these strengths, challenges persist, including knowledge noise within KGs, which can lead to
inaccuracies in model outputs, as noted by Yang et al. This highlights the urgent need for robust filtering
mechanisms and dynamic updating processes to ensure that KGs remain relevant and accurate. Moreover,
the computational complexity associated with integrating KGs with LLM architectures raises concerns
about scalability and real-time application, necessitating more efficient methodologies. Addressing the
subjectivity involved in trust assessments is equally critical, as inconsistent evaluations may hinder the
applicability of these frameworks across diverse contexts. Therefore, future research should prioritize
the development of standardized metrics for trust evaluation, optimized integration algorithms, and
cross-domain applications of KG-LLM frameworks. By tackling these limitations, researchers can unlock
the full potential of integrating KGs with LLMs, paving the way for more reliable, transparent, and
contextually aware Al systems.

6 Challenges and future directions

6.1 Challenges

While integrating Knowledge Graphs (KGs) with Large Language Models (LLMs) offers potential bene-
fits, several significant challenges persist. Knowledge noise within KGs can lead to inaccuracies in LLM
outputs, necessitating robust filtering mechanisms [24], while the complexity of integrating KGs with
LLM architectures can introduce substantial computational demands [13]. Accurately capturing the
intricacies of a domain in a KG is challenging, as nuanced relationships and exceptions may result in
oversimplifications or inaccuracies. Moreover, KGs are often incomplete, leading to gaps in the knowl-
edge accessible to LLMs, which can produce misleading outputs. The dynamic nature of knowledge
necessitates continuous updating of KGs to avoid outdated conclusions, a resource-intensive process.
Integration complexity arises when aligning structured data from KGs with unstructured data processed
by LLMs, requiring sophisticated methods for effective utilization. Additionally, scalability issues be-
come apparent as the size and complexity of KGs increase, complicating maintenance and validation
processes. Subjectivity in knowledge selection can lead to inconsistencies in representation, and biases
in the underlying data can undermine the trustworthiness of LLM outputs. Variability in knowledge
quality further exacerbates trust issues, as inaccurate or outdated information can result in erroneous
conclusions. Interpretability challenges emerge when attempting to understand how KGs influence LLM
decision-making, compounded by limitations in human validation due to the availability of subject mat-
ter experts. Furthermore, the computational overhead of querying and analyzing KGs may impact the
efficiency of trust assessments, and user skepticism regarding the reliability of KGs can hinder accep-
tance, particularly when users are unfamiliar with the methodologies employed in their construction.
Finally, interoperability issues can complicate the integration of KGs built using different standards and
formats, posing challenges for comprehensive trust assessments across various domains. In summary,
while the integration of KGs with LLMs holds promise for enhancing trustworthiness, addressing these
multifaceted challenges is critical for achieving effective and ethical outcomes.[15, 16, 1]

6.2 Future Directions

Future directions for using Large Language Models (LLMs) in conjunction with Knowledge Graphs
(KGs) to enhance trustworthiness can focus on several key areas. Developing methods for creating and
maintaining dynamic knowledge graphs that can automatically update in response to new information,
research findings, or changes in domain knowledge is essential. This could involve leveraging real-time
data sources and machine-learning techniques to ensure that the knowledge graph remains current and
relevant. Additionally, improving the integration of LLM outputs with knowledge graphs through ad-
vanced natural language processing techniques could enhance the alignment of LLM-generated content
with the structured data in KGs, enabling more accurate assessments of trustworthiness based on contex-
tual relevance. Furthermore, exploring automated or semi-automated validation processes for knowledge
graphs, potentially using machine learning algorithms to identify inconsistencies or gaps in the knowl-
edge representation, could reduce reliance on human evaluators and enhance scalability. Encouraging
collaboration between domain experts, data scientists, and Al researchers is vital to creating more ro-
bust knowledge graphs that accurately reflect the complexities of various fields. This interdisciplinary
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approach can help ensure that the knowledge represented is comprehensive and trustworthy. Developing
user-centric metrics for trust that take into account individual user needs, preferences, and contexts can
also enhance the trustworthiness of LLM outputs. Focusing on enhancing the explainability of LLM
outputs about the knowledge graph by providing users with clear explanations of how LLM responses
are derived from the knowledge graph can build trust through transparency. Moreover, creating cross-
domain knowledge graphs that can integrate information from multiple fields allows LLMs to provide
more comprehensive and contextually aware responses. This could enhance the trustworthiness of outputs
in interdisciplinary applications. Addressing ethical considerations related to trust in LLMs and KGs,
including the identification and mitigation of biases in both the knowledge representation and the model
outputs, is crucial for broader acceptance. Conducting extensive real-world testing of LLMs combined
with knowledge graphs in various applications, such as healthcare, finance, and education, is necessary.
Gathering empirical data on their performance and trustworthiness can inform further improvements
and refinements. Finally, encouraging community contributions to knowledge graphs, allowing users to
add, edit, and validate information, can enhance the richness and accuracy of the knowledge represented,
fostering a sense of ownership and trust among users. By pursuing these future directions, the integration
of LLMs and knowledge graphs can lead to more reliable, trustworthy, and user-friendly systems that
effectively support decision-making across various domains.

7 Conclusion

In this paper, we explored the integration of Large Language Models (LLMs) with Knowledge Graphs
(KGs) to enhance the trustworthiness of information generated in various domains. We established that
while LLMs demonstrate impressive capabilities in natural language processing tasks, their outputs can
be limited by biases and inaccuracies inherent in the training data. By combining LLMs with KGs, we
can leverage the structured, semantically rich information contained within knowledge graphs to improve
the reliability and contextual relevance of LLM-generated content. Our investigation highlighted several
promising future directions, including the dynamic updating of knowledge graphs, the enhancement
of natural language processing techniques for better integration, and the development of user-centric
trust metrics. Additionally, we emphasized the importance of interdisciplinary collaboration and ethical
considerations in the deployment of these integrated systems. Through extensive empirical testing and
community engagement, we aim to create more robust and trustworthy systems that effectively support
decision-making across various fields. The findings of this study pave the way for future research aimed
at bridging the gap between LLMs and KGs, ultimately fostering trust and improving the quality of
information accessible to users.
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Abstract

Tomato is a globally important crop, with annual production exceeding 180 million tons. However,
fungal and pest-induced diseases contribute to yield losses of 20-40% worldwide. This paper proposes
Mamba-CNN, a novel hybrid architecture that combines state space models with convolutional
neural networks for tomato leaf disease classification. Our method achieves an accuracy of 93.7%
on a 5-class dataset by leveraging a synergistic fusion of global and local features, significantly
outperforming standalone CNNs (85.9%) and Mamba Vision (88.2%). The proposed framework
is particularly effective in capturing fine-grained visual patterns and modeling long-range disease
progression.

Keywords: Mamba Vision, tomato leaf disease, image classification, convolutional neural net-
works (CNN).

1 Introduction

The agricultural sector, a cornerstone of the global economy, faces mounting challenges such as climate
change, disease outbreaks, and labor shortages. Addressing these issues is essential to ensuring food
security and promoting sustainable development. Among the emerging technological solutions, artificial
intelligence (AI) has emerged as a transformative force in modern agriculture [?].

AT empowers farmers with deep insights into crop health, resource optimization, and risk mit-
igation. By analyzing large-scale datasets—including satellite imagery, sensor data, and historical
records—intelligent systems can detect early signs of disease, predict yields, and recommend targeted
interventions [?].

In particular, edge Al solutions for plant disease detection have shown promising results. Integrating
deep learning models such as YOLOv3 with embedded platforms like the NVIDIA Jetson TX2 enables
drones to accurately identify pest-infested zones and apply pesticides with precision, demonstrating the
real-world utility of AI in precision agriculture [?].

Tomatoes (Solanum lycopersicum) are one of the most widely cultivated and consumed crops glob-
ally [?], valued for their nutritional content, including essential vitamins and antioxidants. However,
tomato crops are frequently affected by a variety of foliar diseases, leading to significant yield losses and
economic burdens on farmers. Early and accurate detection of these diseases is critical for effective crop
management and food supply resilience.

Traditional disease identification methods depend on expert visual inspection, which is time-consuming,
labor-intensive, and inherently subjective. Recent advances in imaging and machine learning have en-
abled the development of automated systems capable of detecting plant diseases from leaf images with
higher accuracy and speed.

However, tomato leaf disease classification remains a challenging task due to the following real-world
factors:

e Visual Ambiguity: Early-stage lesions (1-2 mm) exhibit highly similar textures.

e Context Dependency: Effective classification requires capturing both local spot patterns and
global lesion distribution.

e Field Variability: Environmental factors such as lighting, occlusion, and varying leaf orientations
affect image quality.
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To address these challenges, we propose Mamba-CNN, a novel hybrid architecture that combines
state space models (SSMs) with convolutional neural networks (CNNs) for robust tomato leaf disease
classification.

The key contributions of this paper are as follows:
1. We introduce the first hybrid SSM-CNN architecture tailored for agricultural vision tasks.
2. We design a dynamic feature fusion mechanism enhanced with spatial-channel attention.

3. We conduct comprehensive benchmarking on a curated 5-class tomato leaf disease dataset.

2 Related Work

2.1 Traditional Computer Vision Approaches

Early approaches to plant disease recognition relied heavily on handcrafted feature extraction techniques:

e Color-Based Methods:

N
1
Hypg = N Z x;), H €10,360](HSV space) (1)

Introduced by [?], these methods were highly sensitive to illumination changes under real-world
conditions.

e Texture Analysis: Grey-Level Co-occurrence Matrix (GLCM) features:

N1
Contrast = Z P; (i —j)? (2)

i,7=0

and Local Binary Patterns (LBP) were explored, but failed to effectively differentiate between
visually similar fungal lesions [?].

e Shape Descriptors: Elliptic Fourier Descriptors attempted to quantify lesion morphology but
underperformed when confronted with irregular or fragmented lesion boundaries [?].

2.2 Deep Learning Architectures

Modern techniques leverage deep learning, particularly convolutional neural networks (CNNs) and transformer-
based models [?]:

e Transfer Learning:

M
—> " yelog(pc) (3)

Pretrained CNNs such as ResNet-50 and EfficientNet achieved 80-85% accuracy on leaf datasets
but struggled with subtle early-stage symptoms [?].

e Attention Mechanisms: Vision transformers (ViTs) apply multi-head self-attention:

Attention(Q, K, V) = softmax (%) v (4)

These models improve spatial focus but incur a 3x increase in computational cost [?].

e Multi-Scale Fusion: Feature pyramid networks (FPN) combine low- and high-level features to
enhance spatial detail, but often introduce feature redundancy [?].
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2.3 State Space Models

Recent work on sequence modeling has led to renewed interest in state space models (SSMs):

e Mamba Architecture: Combines selective SSMs with hardware-aware design for efficient infer-
ence:

ye = S6(xy, A, A, B,C, D) = SSM(ConvlD(xy)) (5)
Mamba offers linear-time complexity O(L) with respect to sequence length L [?].

e Vision Applications: Vision Mamba [?] demonstrated strong performance in medical imaging,
but exhibited limitations when applied to fine-grained agricultural textures.

e Hybrid Models: Hybrid SSM-transformer models have been proposed to reduce computational
cost, though some suffer from training instability [?].

Table 1: Comparative analysis of existing approaches

Method Accuracy Params (M) Limitations
SVM + GLCM [?] 68.2% - Ilumination sensitivity
ResNet-50 [?] 85.9% 25.6 Limited receptive field
ViT-Base [?] 87.1% 86.4 High compute cost
Mamba Vision [?] 88.2% 18.3 Poor texture modeling

2.4 Hybrid Vision Architectures

Recent research has explored combining complementary architectural paradigms:

o CNN-Transformer Hybrids: Achieved 89% accuracy on the PlantVillage dataset through local-
global feature fusion [?].

e SSM-Based Designs: Vision Mamba (VMamba) demonstrated the potential of SSMs in medical
vision tasks [?].

e Agricultural Applications: Dilated CNNs achieved 82% accuracy for rice disease classification
under real-field conditions [?].

3 Methodology

3.1 DMotivation for Hybrid Design

Tomato leaf disease classification poses unique challenges that require both local texture understanding
and global contextual reasoning:

e Local Features: Early blight typically appears as 2-3 mm brown lesions. CNNs excel in capturing
such fine-grained local patterns due to their localized receptive fields.

e Global Context: The progression of disease across the leaf surface is often spatially extended and
irregular. Mamba’s long-range sequence modeling capabilities are well-suited for capturing these
broader patterns.

3.2 Architecture Design

3.2.1 Convolutional Backbone

We employ a modified EfficientNet-B0O backbone for initial feature extraction:
F . R3><224><224 BN R1280><7><7 (6)
cnn -

The early stem layers are preserved to ensure robust local texture encoding.
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3.2.2 Vision Mamba Block

A modified Vision Mamba module is applied for capturing long-range dependencies:

]:mamba . R3><224><224 N R256><14><14 (7)

Its key components include:
e Patch embedding using 16 x 16 convolutional kernels
e Three stacked Mamba blocks with an expansion ratio of 2

e Depth-wise convolution for efficient spatial mixing

3.3 Dynamic Feature Fusion

To unify representations from the CNN and Mamba branches, we introduce a three-stage dynamic fusion
module:
1. Dimension Alignment

/
‘Fcn n

= Adaptive Pool(Fepy) € R0 (8)
2. Attention Weighting
a, B = softmax(W [ Frn; Fmamba)) (9)
3. Nonlinear Combination
Frusion = @ Frpp + B Fnamba + MLP([Flp 5 Fnambal) (10)

[btbp] Dynamic Fusion Process [1] Fenn, Fmamba Fenn < Global AvgPool(Fenn) Fryomba
w  MLP([F] ! D) a, B < softmax(w) - F.,, + 8- F!

cnn Y mamba mamba

+ Flatten(Fmamba)

3.4 State Space Formulation

We adopt a continuous-time state space model (SSM), discretized using zero-order hold for compatibility
with image sequences:

Z = eAA, E = (AA)_I(eAA - I)ABht = thfl +§xtyt = Cht + D.’L't (11)

Here, A denotes a learnable time-step, while A, B, C, and D are trainable matrices that model dynamic
state transitions.

3.5 Training Strategy
Our training pipeline is divided into three phases to stabilize convergence and optimize performance:
1. Warm-Up Phase (10 epochs):

e Learning rate linearly increases from 10~ to 3 x 10~%
e Mamba parameters are frozen
e CNN is optimized using focal loss

2. Joint Training Phase (70 epochs):

e All parameters are unfrozen
e Optimized using the Lion optimizer with cosine learning rate decay

e Introduce MambaMizr augmentation:
T=Arg+ (1 —Nazxp, X~ Beta(0.8,0.8) (12)
3. Fine-Tuning Phase (20 epochs):

e Learning rate is reduced to 10~°
e Apply layer-wise learning rate decay
e Employ label smoothing with € = 0.1
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Table 2: Training Hyperparameters
Parameter Warm-Up Phase Joint Training Phase

Batch size 32 32
Learning rate 1x107% 3x 1074
Weight decay 0.01 0.05
Augmentation Basic MambaMix

4 Experimental Results

The experimental setup consists of a Windows 10 operating system equipped with 32 GB of RAM and
GTX 3090 GPU. The model training is carried out using the PyTorch framework.
4.1 Dataset Collection and Preprocessing

The dataset utilized in this study comprises images of tomato leaves categorized into five classes: Healthy,
Early Blight, Late Blight, Leaf Mold, and Septoria Leaf Spot [?]. Each class is divided into training and
testing subsets as follows:

Table 3: Class Distribution and Characteristics

Disease Train  Test Characteristics

Healthy 2,000 500 Uniform green coloration

Early Blight 2,000 500 Concentric brown rings

Late Blight 2,000 500 Water-soaked lesions

Leaf Mold 2,000 500 Yellow upper surface, purple lower surface
Septoria Leaf Spot 2,000 500 Circular spots with dark edges

To ensure consistency and enhance model performance, the following preprocessing steps were applied:

e Image Resizing: All images were resized to a uniform dimension suitable for input into the Vision
Mamba model.

e Normalization: Pixel values were normalized to a standard range to facilitate faster convergence
during training.

e Data Augmentation: Techniques such as rotation, scaling, and flipping were employed to increase
the diversity of the training dataset and improve the model’s generalization capabilities.

illustration of this dataset is presented in Figure 2.

5 Discussion

As shown in Figure 2, Mamba-CNN achieves 90% accuracy by epoch 30, significantly faster than the
CNN baseline (epoch 45). This acceleration suggests:

o Effective Feature Fusion: The hybrid architecture successfully combines CNN’s local texture
analysis with Mamba’s global pattern recognition early in training

e Synergistic Learning: Joint optimization enables complementary feature discovery rather than
independent pathway training

e Stable Optimization: Careful learning rate scheduling prevents mode collapse in the dual-branch
architecture

Figure 3 reveals only 1.3% accuracy difference between training and validation sets, suggesting;:

e Robust Regularization: Our MambaMix augmentation effectively simulates field conditions
(shadows, occlusions)

e Balanced Learning: The focal loss successfully handles class imbalance (Spider Mites vs. Septoria
samples)
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b — Tomato early blight
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Figure 1: image dataset
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Figure 2: Accuracy progression across training epochs demonstrates Mamba-CNN’s rapid convergence
compared to baseline models.
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Training vs Validation Accuracy

— Training ~  ___ ——
==+ vValidaton = _ __mme=="T"

920

Accuracy (%)
[o2)
(9]

@
o

75

70

0 20 40 60 80 100
Epochs

Figure 3: Narrow training-validation gap indicates strong generalization despite complex architecture.

e Architecture Stability: No significant overfitting despite high model capacity (21.1M parame-
ters)

The loss curves in Figure 5 demonstrate:

e Rapid Initial Learning: 60% loss reduction in first 20 epochs

e Consistent Decay: No plateauing suggests effective learning rate scheduling
e Convergence Stability: Final loss variance j0.01 across runs

While achieving 93.7% accuracy, challenges remain:

e Edge Cases: Heavy occlusion reduces accuracy to 78% in field tests

e Computational Cost: 3.2G FLOPs may limit mobile deployment

e Dataset Bias: Underrepresentation of rare disease combinations

6 Conclusion

This work presents Mamba-CNN, a novel hybrid architecture for tomato leaf disease classification that
synergistically integrates convolutional networks with state space models. Our comprehensive evaluation
on a b-class dataset demonstrates three key advancements:

e Achieved 93.7% accuracy, surpassing CNN (85.9%) and Mamba-only (88.2%) baselines through
effective fusion of local texture features (CNN) and global disease progression patterns (Mamba).

e Reduced the error rate by 41% for challenging classes like Septoria compared to prior work.
e Maintained computational efficiency (3.2 GFLOPs) despite the dual-path design.

In future work, we aim to extend Mamba-CNN to real-world agricultural applications by integrating it

into mobile applications or deploying it on drones for in-field, real-time disease detection under varying
environmental conditions.
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Abstract

This paper presents a novel enhancement to the two-stage PCANet framework for biometric
recognition, introducing a discriminative block reweighting strategy coupled with overlapped his-
togram encoding. Unlike traditional approaches that treat all spatial regions equally, our method
assigns adaptive weights to block histograms based on their class-separability, quantified using a
Fisher Score-inspired criterion. Additionally, we integrate overlapping local blocks during histogram
computation to increase spatial robustness and capture fine-grained local patterns. These enhance-
ments are lightweight, non-intrusive, and maintain the original PCANet structure, making them
suitable for low-resource biometric systems. Evaluations on the AWE ear dataset demonstrate a
significant accuracy gain compared to the baseline, validating the effectiveness of our approach in
practical recognition scenarios. extbfKeywords: PCANet, ear recognition, histogram reweighting,

Fisher score, biometric systems.

1 Introduction

Biometric systems have increasingly leveraged non-intrusive modalities such as ear images, which offer
high stability and uniqueness while remaining unaffected by facial expressions or occlusions[1, 2, 3].
Compared to face and fingerprint modalities, ear recognition presents a viable alternative for robust
identity verification, particularly in surveillance and mobile authentication scenarios[4].

In recent years, lightweight neural models have gained traction in biometric applications, balancing
accuracy and computational cost[5]. Among these, PCANet[6] has shown remarkable performance using
simple cascaded PCA filters followed by binary hashing and histogram pooling. Its ICA-based variant,
ICA-PCANet[7], further improves filter independence and class separability, making it suitable for tasks
with limited training data and no need for backpropagation.

However, both PCA and ICA-based networks often rely on fixed, uniform feature aggregation strate-
gies, such as equal-weighted block histograms. This uniformity limits the ability to emphasize class-
discriminative regions in the spatial domain. Furthermore, conventional histogram computation ignores
local overlaps, which can degrade robustness to minor shifts, rotations, and occlusions.

To address these limitations, we propose an enhancement to the ICA-PCANet pipeline. Our method
integrates two key modifications: (1) a discriminative block reweighting strategy based on a Fisher Score-
inspired measure of class separability, and (2) overlapped block histogram encoding to enhance spatial
representation. These changes improve performance while preserving the computational simplicity and
interpretability of the original framework.

The remainder of this paper is structured as follows. Section 2 reviews related work in PCANet
variants and biometric feature extraction. Section 3 presents our proposed enhancements, including dis-
criminative block reweighting and overlapped histogram encoding. Section 4 describes the experimental
setup and results. Finally, Section 5 concludes the paper and discusses future work.

2 Related Work

Biometric recognition using shallow learning networks has drawn increasing attention due to their effi-
ciency, simplicity, and suitability for low-resource environments. Prior works related to our method can
be grouped into three areas: PCA-based architectures, histogram normalization strategies, and spatial
pooling or block weighting enhancements.
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PCANet [6] is a foundational shallow learning framework that uses stacked PCA filters, binary hash-
ing, and local histograms for image classification. Its success lies in its simplicity and efficiency, without
the need for deep learning backpropagation. Our earlier work introduced a two-stage PCA-based model
for ear recognition using tied-rank histogram normalization and overlapped blocks. Building on this, the
TRiPCANet architecture [8] introduced discriminative histogram tuning and showed strong performance
in ear-based biometric tasks. Despite these improvements, most PCA-based networks still treat all spa-
tial regions equally during feature aggregation, which may overlook spatially discriminative structures
critical in biometric scenarios.

Several works have explored ways to improve the robustness of histogram-based feature encoding.
Tied-rank normalization [9] reduces sensitivity to lighting and contrast changes by ranking histogram
values instead of counting frequencies. Although effective, these methods assume each histogram block
contributes equally, failing to account for regional class separability. In biometric systems, such uniform
treatment may suppress regions critical to identity recognition.

Conventional shallow models perform histogram pooling over fixed, non-overlapping or uniformly
weighted blocks. While simple, this can reduce robustness to translations and occlusions. To address this,
some researchers have adopted overlapping blocks [10], improving continuity in spatial representation.
Others have introduced pyramid pooling or attention-weighted blocks [11, 12] in deep architectures to
emphasize salient regions. However, such strategies are rarely used in PCA-based systems due to their
unsupervised and lightweight nature. Moreover, deep attention models require additional training, which
contradicts the plug-and-play philosophy of shallow networks like PCANet.

Most shallow PCA frameworks overlook the discriminative variability of local blocks. They rely on
fixed spatial pooling and fail to prioritize regions that offer higher inter-class separability. Moreover,
enhancements like attention or dynamic weighting are often tied to deep models. We address these
limitations by introducing a Fisher Score-inspired block reweighting strategy combined with overlapped
histogram encoding—boosting both discriminative power and spatial robustness without altering the
two-stage PCA filter structure.

3 Proposed Method

The proposed system enhances the traditional two-stage PCANet framework by introducing two main
improvements: discriminative block reweighting based on Fisher Score principles and overlapping block
histogram encoding. These extensions are designed to increase the discriminative power of the extracted
features while maintaining the architectural simplicity and efficiency of the original PCANet. Fig. 1
illustrates the full pipeline from image preprocessing to classification.

Stage 1 Stage 2 Binarization
Filter Expansion Filter Expansion !
and PCA Layer and PCA Layer EmEE
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Figure 1: Proposed feature extraction pipeline incorporating two-stage PCA filtering, overlapped block
histogram encoding, tied-rank normalization, and discriminative block reweighting.
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The process begins with a grayscale ear image of fixed dimensions. In the first stage, local image
patches of size k; X ki are extracted using a sliding window approach. These patches are vectorized and
centered by subtracting the mean. Principal Component Analysis (PCA) is then applied to learn a bank
of L, orthogonal filters that capture the most representative directions of variance in the data. These
filters are convolved with the original image, producing L; output feature maps.

Each of these Stage 1 feature maps is then processed by Stage 2. Similar to the first stage, patches
of size ko X ko are extracted from the Stage 1 outputs, and a second PCA is performed to learn another
set of Lo filters. These filters are applied through convolution, resulting in a set of Lo response maps
per Stage 1 map. A binarization step using a Heaviside function is applied to each response, converting
them into binary maps. The binary maps are then compressed into a single decimal-coded feature map
per image by stacking and encoding the binary outputs.

The resulting encoded map is spatially divided into overlapping blocks. For each block, a histogram is
generated based on the distribution of encoded values. To enhance feature consistency across illumination
and intensity variations, tied-rank normalization is applied to each block histogram. This converts
raw counts into relative ranks, improving comparability and reducing sensitivity to absolute magnitude
differences.

A key innovation in this work is the discriminative reweighting of block histograms. During training,
each block position across all training images is evaluated using a Fisher Score-inspired criterion, which
quantifies the block’s class separability. Blocks with higher inter-class variance and lower intra-class
variance are assigned greater importance. These weights are used to scale the block histograms before
they are concatenated, effectively emphasizing the most informative spatial regions.

All reweighted and normalized block histograms are concatenated to form the final feature vector for
each image. This global descriptor reflects both local structure and global distribution, incorporating
discriminative and robust spatial cues. The final feature vector is then passed to a trainable classification
model, which learns to distinguish between subjects based on these enhanced features.

This pipeline ensures a balance between computational efficiency, feature richness, and spatial ro-
bustness. The use of PCA filtering avoids the need for gradient-based learning, making the method
lightweight and interpretable, while the introduced enhancements significantly improve recognition per-
formance in unconstrained biometric scenarios.

4 Experiments and Results

Dataset Description: The proposed method is evaluated on the Annotated Web Ears (AWE) dataset [1],
which contains ear images from 100 different subjects captured under uncontrolled conditions. Each sub-
ject has multiple images captured with variations in angle, lighting, and background, making it a chal-
lenging benchmark for unconstrained biometric recognition. All images were preprocessed and resized
to 175 x 80 pixels in grayscale, consistent with prior work [13, 8.

Experimental Protocol: We adopted the same protocol as used in TR-PCANet and TR-ICANet,
with 60% of the images per subject used for training and the remaining 40% for testing. No augmentation
or preprocessing beyond resizing and grayscale normalization was applied. Performance was evaluated
using rank-1 recognition accuracy.

System Configuration: The system is configured with two PCA stages, each with 9 filters. The
patch sizes are set to 9 x 9 in the first stage and 7 x 7 in the second. Binary thresholding is applied to
the PCA response maps, followed by block-wise histogram encoding. Overlapping blocks of size 22 x 22
are used, with 30% spatial overlap. Tied-rank normalization is applied to each histogram, followed by
block-level reweighting using a Fisher Score-inspired criterion. The resulting feature vector is fed into a
classifier to predict subject identity.

Quantitative Comparison: We compare our method against standard PCANet, as well as our pre-
viously proposed TR-PCANet and TR-ICANet models. Table 1 summarizes the recognition accuracies.

Ablation Study: To assess the contribution of each proposed component, we conducted an ablation
study. Table 2 presents the accuracy after selectively removing each enhancement.

Feature Dimensionality vs. Accuracy: We also evaluated the trade-off between feature dimen-
sionality and recognition accuracy. Figure 3 shows that the proposed method consistently outperforms
the baseline PCANet across all dimensionality levels while maintaining a compact representation.

Robustness to Distortions: To assess robustness, we introduced controlled distortions to the test
images, including small-angle rotations, brightness shifts, and partial occlusions. The results in Table 3
and Figure 4 demonstrate the proposed method’s superior resilience under all evaluated conditions.
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Table 1: Recognition Accuracy Comparison on AWE Dataset

Method Accuracy (%)
PCANet [0] 82.5
PCANet 4+ Overlap Only 84.1
PCANet 4+ Reweighting Only 85.3
TR-PCANet [13] 80.75
TR-ICANet [8] 78.0
Proposed (Overlap + Reweight) 87.3

Table 2: Ablation Study Results

Configuration Accuracy (%)

Baseline PCANet 82.5

+ Overlapped Blocks Only 84.1

+ Discriminative Reweighting Only 85.3

+ Tied-Rank Only 83.6

All Enhancements (Proposed) 87.3
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Figure 2: Ablation study showing the individual and combined impact of overlapping blocks, discrimi-
native reweighting, and tied-rank normalization.
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Figure 3: Comparison of feature dimensionality vs. recognition accuracy between PCANet and the
proposed method.
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Table 3: Recognition Accuracy under Distortions

Distortion Type | PCANet | Proposed
Rotation (£10°) 79.3 84.7
Brightness Shift 77.8 83.6
Partial Occlusion 75.4 82.1

Robustness to Image Distortions

90.01
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Figure 4: Recognition accuracy of PCANet vs. proposed method under rotation, brightness changes,
and partial occlusion.

Discussion: The experimental results highlight the effectiveness of the proposed enhancements to
the standard PCANet architecture. Each added component—overlapped block histograms, tied-rank
normalization, and discriminative block reweighting—offers measurable improvements in accuracy. The
ablation study clearly shows that reweighting plays a dominant role in increasing class-separability by
giving more importance to informative spatial regions.

Moreover, the dimensionality vs. accuracy analysis shows that our method maintains compact repre-
sentations without sacrificing performance, which is crucial for real-time or embedded biometric systems.
Under distortion, the proposed model retains significantly better performance than the baseline PCANet,
confirming its robustness in challenging imaging conditions. Importantly, all improvements were achieved
without altering the core PCA-based architecture or introducing deep learning modules, thus maintaining
the interpretability and simplicity of the original design.

5 Conclusion

We proposed a simple and effective enhancement to PCANet for ear recognition by introducing over-
lapped histograms, tied-rank normalization, and discriminative block reweighting. The method main-
tains the lightweight nature of the original two-stage PCA-based framework while significantly improving
recognition accuracy.

Experiments on the AWE dataset show a strong performance gain over PCANet and its variants,
achieving 87.3% accuracy. The approach also proves robust under rotation, lighting, and occlusion.
These results highlight its potential for practical, low-complexity biometric systems.

Future work will focus on extending the approach to other modalities and refining block weighting
strategies.
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Abstract

This research develops an optimized deep learning-based License Plate Recognition (LPR) sys-
tem, comparing YOLOv8 and YOLOv9 with integrated OCR for improved text extraction. The
YOLOv9-OCR combination outperforms YOLOvS in detection accuracy and efficiency, especially in
challenging conditions. The implementation phase involves deploying the trained model on a Rasp-
berry Pi, creating an autonomous, embedded LPR system. Results and performance analysis show
that YOLOvV9, when combined with OCR, outperforms YOLOvVS in terms of detection accuracy and
efficiency, particularly in challenging conditions such as low lighting and occlusions..
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Deep learning, CNN, LPR, YOLOuvS, YOLOv9, OCR, Raspberry Pi, object detection.

1 Introduction

Deep learning, a branch of artificial intelligence and big data, has experienced unprecedented growth and
development in recent years [1][2]. This rapid advancement has opened new possibilities to solving com-
plex real-world problems, including the challenging task of automatic license plate recognition in public
institutions [3][4][5]. Automatic License Plate Recognition (LPR) is crucial for intelligent transportation
[6][7] and surveillance systems [8][9]. This study leverages deep learning to enhance LPR, focusing on
YOLOv9 [10][11] for license plate detection and OCR [16] for textual information extraction [12][13],
implemented on a Raspberry Pi [14][15].

2 Literature Review

Deep learning, particularly CNNs[17][18], has revolutionized image processing. YOLO algorithms [19]
have gained prominence in object detection [20][21][22]. LPR systems benefit from deep learning-based
approaches, outperforming traditional methods. OCR is crucial for character extraction from detected
plates. Embedded systems like Raspberry Pi are viable platforms for Al applications.

3 Architecture of Convolutional Neural Network

The architecture of any CNN includes convolution layers (CONV), pooling layers (POOL), and fully
connected layers (FC). The convolution layer detects specific features, the pooling layer reduces the size
of feature maps, and the fully connected layer classifies the input image.
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4 Our general operating steps of LPR

Our general operating steps include data loading, training phase, model initialization, model training,
model tuning and model saving.

5 Methodology

Our research methodology focuses on developing an efficient and accurate License Plate Recognition
system using YOLOV9, integrated with OCR. This includes model selection, data preparation, training
processes, and system implementation.

5.1 Model Selection and Architecture

YOLOV9 was selected for its superior performance in real-time object detection tasks. It incorporates
advanced optimizations for fast and precise recognition.

5.2 YOLOvVY9 Hyperparameters and Activation Functions

We carefully tuned several hyperparameters to optimize the model’s performance:

e Batch size: Number of images processed before updating internal model parameters.

e Epochs: Number of complete passes over the entire dataset.

e Img size: Dimension to which all images are resized before being fed into the model.

e Patience: Number of epochs to wait without improvement before stopping training.

e Cache: Setting to enable caching of dataset images for improved training speed.

e Save_period: Frequency for saving model checkpoints (in epochs).

e Optimizer: We chose AdamW, a variation of the Adam optimizer with weight decay [23].

e Activation function: We primarily used Leaky ReLU for activation functions to address the
”dying ReLU” problem and ensure better model robustness when detecting license plates [24].

5.3 Data Preprocessing and Augmentation

The Roboflow platform [25] was utilized for data preprocessing, including data collection, duplicate
removal, normalization, and encoding. Data augmentation techniques were employed to enhance the
model’s robustness.

5.4 Model Training and Optimization

The YOLOvV9 model was trained using the prepared dataset and initialized with pre-trained weights.
Hyperparameters were fine-tuned, and the learning rate was adjusted.
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5.5 Performance Monitoring and Evaluation

Weights & Biases (W&B) was integrated for real-time experiment tracking and data visualization. Key
metrics included Mean Average Precision (mAP), Precision, Recall, and F1-Score.

5.6 Text Recognition Process

OCR converts images of text into machine-readable text, relying on advanced algorithms. The OCR pro-
cess includes grayscale conversion, character segmentation, and verification against the Algerian license

12345 678 91

Figure 1: Algerian license plate

6 Implementation steps

The implementation steps involve experimental setup, dataset preparation, model training, and perfor-
mance evaluation.

6.1 Experimental Setup

Tesla T4 GPU was used for training, with deployment on a Raspberry Pi 5 (8 GB RAM). The software
environment was built around Python 3.10.12 and TensorFlow 2.17.0 PyTorch 2.4.14-cul21.

6.2 Dataset Preparation

The dataset comprised 24,242 images of vehicle license plates from Roboflow, with 87% for training, 8%
for validation, and 5% for testing.

6.3 Model Training

The YOLOvV9 model was initialized with weights pre-trained on the COCO dataset, trained for 20 epochs
with a batch size of 16, using the AdamW optimizer.

6.4 Performance Evaluation

The YOLOvV9-based LPR system achieved a mean Average Precision (mAP50) of 0.98 and a mean
Average Precision (mAP50-95) of 0.70.
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Figure 2: our prototype

6.5 Raspberry Pi Implementation

The Raspberry Pi 5 (8 GB RAM) was configured with specific overclocking settings to balance perfor-
mance and system stability.

6.6 OCR Integration and Performance

The OCR system achieved an accuracy of 97% in recognizing alphanumeric characters, with post-
processing to improve accuracy.

6.7 Implementation Tools and Hardware

This section details the implementation process of our License Plate Recognition (LPR) system using the
YOLOvV9 model. We will cover each implementation step, from preparing the development environment
to training and evaluating the model. Our discussion will encompass technology choices, hyperparameter
configurations, and the tools and libraries utilized in this project. Our implementation relied on two key
hardware components (see Figure2).

1- Raspberry Pi: We deployed our LPR system using Raspberry Pi 4 and 5 models. The Raspberry
P1i, known for its versatility and affordability, provides an ideal platform for embedded AI applications.

2- Camera: We employed a 5MP camera designed for Raspberry Pi. This camera module, capable

of 2592x1944 pixel static images and 1080p@30fps video recording, connects directly to the Raspberry
Pi’s CSI connector, ensuring high-speed data transfer for real-time image processing 2.

6.8 Training Models

YOLOvVS8 and YOLOvV9 were trained on the LPRCVP dataset, containing 24,242 images. Specific settings
were used for each model.
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7 Results and Performance Analysis

7.1 YOLOvVS8 Results

YOLOWVS achieved high accuracy in object detection:

e Precision: 0.97643
e Recall: 0.9568

e mAP@50: 0.9803

e mAP@50-95: 0.6971
e 1 Score: 0.9655

These metrics indicate high accuracy in detecting and classifying objects, with a strong balance
between precision and recall, as demonstrated by the high F1 Score. The mAP values, particularly
mAP50, show YOLOvS8’s strong capability to detect objects precisely, even under varying Intersection
over Union (ToU) thresholds (see Figure 3).
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Figure 3: Performance curves of the YOLOv8 model during training and validation.

7.1.1 Training and Validation Graphs

The training and validation graphs indicated improvements in object localization and classification.

7.2 YOLOvV9 Results

YOLOV9 also demonstrated high accuracy:

e Precision: 0.96821
e Recall: 0.9285
mAP@50: 0.96649

mAP@50-95: 0.62807
F1 Score: 0.97
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Figure 4: Performance curves of the YOLOvV9 model during training and validation.

These metrics indicate high accuracy in detecting and classifying objects, with a strong balance
between precision and recall, as demonstrated by the high F1 Score. The mAP values, particularly
mAP50, show YOLOvV9’s strong capability to detect objects precisely, even under varying Intersection
over Union (IoU) thresholds (see Figure 4).

7.2.1 Training and Validation Graphs

The training and validation graphs indicated improvements in object localization and classification.

7.3 Comparative Analysis of YOLOvV9 and YOLOvVS

After conducting both experiments with YOLOv9 and YOLOvS8 on the same dataset, we reset them
with identical hyperparameters to ensure a fair comparison. The results of this comparison, summarized
in Table 1, highlight the superior performance of YOLOvV9 across all evaluated metrics.

Metric YOLOv9 | YOLOvVS8
Precision 0.984 0.976
Recall 0.955 0.956
mAP50 0.985 0.980
mAP50-95 0.696 0.967
F1 Score 0.970 0.9655

Table 1: Performance Comparison between YOLOvV9 and YOLOv8

7.4 Detailed Performance Analysis

YOLOvV9 demonstrates slight advantages in precision and F1 Score, while YOLOv8 excels in mAP50-95.

8 Practical Application with Raspberry Pi

The trained YOLOv9 model was successfully applied to detect license plates in various real-world sce-
narios.
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8.1 Raspberry Pi, why?
8.1.1 Importance of Embedded Implementation for LPR Systems

Embedded systems are crucial for efficient processing and real-time capabilities.

8.1.2 Advantages of Using Raspberry Pi for AI Deployment

The Raspberry Pi offers real-time processing, cost-effectiveness, portability, and flexibility.

8.1.3 Objectives of the Raspberry Pi Implementation

The objectives include real-time processing, cost-effectiveness, portability, and flexibility.

8.2 Hardware Setup

Hardware specifications for Raspberry Pi 4 and 5, camera module 5MP Rev1.3, and additional compo-
nents.

8.3 Software Environment

Raspbian (Raspberry Pi OS) was installed and configured.

8.3.1 Required Libraries and Frameworks

OpenCV, TensorFlow Lite, and NumPy were used.

8.4 Model Optimization for Raspberry Pi

TensorFlow Lite conversion was performed for efficient execution.

8.5 Physical Implementation Process

System architecture overview, image capture and preprocessing, model inference, post-processing, and
result visualization.

8.6 Use Case Demonstrations

Performance in diverse scenarios such as night (Figure 5) detection, extreme angles, severe weather
conditions and multiple vehicle detection (Figure 6).
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Figure 5: Our model in the night.
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Figure 6: Extreme angles, severe weather conditions and multiple vehicle detection.
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9 Conclusion

Our hybrid YOLOv9 and OCR model significantly improves license plate detection compared to YOLOvS.
It demonstrates high accuracy and reliability across varied testing conditions. Key metrics like mAP
and Fl-score confirm its optimization for real-world applications. This enhanced performance makes it
suitable for diverse and challenging scenarios

The Raspberry Pi deployment proves the feasibility of embedded Al for real-time LPR. The system
operates efficiently across different environments, maintaining consistent detection. This confirms its
potential in smart surveillance and automated toll systems. Its practicality is showcased through effective
performance.

Thanks to advanced deep learning, our system has advanced LPR technology. Increased accuracy
and speed enhance security, traffic monitoring, and smart city projects. Its adaptability allows for deeper
integration with IoT systems, paving the way for broader and more versatile applications.

Areas for potential improvement include handling extreme angles and severe weather conditions.
Future work includes integration with traffic management systems and multi-country license plate recog-
nition.

References

[1] Nath, D., Ankit, Neog, D. R., & Gautam, S. S. (2024). Application of machine learning and deep
learning in finite element analysis: a comprehensive review. Archives of computational methods in
engineering, 31(5), 2945-2984.

[2] Zhenpeng, Y. (2024). Application of Artificial Intelligence in Computer Network Technology in the
Age of Big Data [J]. Journal of Artificial Intelligence Practice, 7(1).

[3] Chang, S. L., Chen, L. S., Chung, Y. C., & Chen, S. W. (2004). Automatic license plate recognition.
IEEE transactions on intelligent transportation systems, 5(1), 42-53.

[4] Joshi, D., & Mohd, N. (2023, May). Techniques used in automatic number plate recognition. In 2023
4th International Conference for Emerging Technology (INCET) (pp. 1-6). IEEE.

[5] Calitz, A., & Hill, M. (2020). Automated license plate recognition using existing university infras-
tructure and different camera angles. The African Journal of Information Systems, 12(2), 4.

[6] Khalil, R. A., Safelnasr, Z., Yemane, N., Kedir, M., Shafiqurrahman, A., & Saeed, N. (2024). Ad-
vanced learning technologies for intelligent transportation systems: Prospects and challenges. IEEE
Open Journal of Vehicular Technology.

[7] Nagarajan, S. M., Devarajan, G. G., Bashir, A. K., & Al-Otaibi, Y. D. (2024). Adversarial deep
learning based Dampster—Shafer data fusion model for intelligent transportation system. Information
Fusion, 102, 102050.

[8] Saleh, A., Zulkifley, M. A., Harun, H. H., Gaudreault, F., Davison, 1., & Spraggon, M. (2024). Forest
fire surveillance systems: A review of deep learning methods. Heliyon, 10(1).

[9] Alotaibi, S. R., Mengash, H. A., Maray, M., Alotaibi, F. A., Alkharashi, A., Alzahrani, A. A.,... &
Alnfiai, M. M. (2025). Integrating Explainable Artificial Intelligence with Advanced Deep Learning
Model for Crowd Density Estimation in Real-world Surveillance Systems. IEEE Access.

[10] Sun, Z., & Mariano, V. Y. (2022). SiT-YOLOv9: An Efficient Algorithm for Learning Behavior
Detection in the Home Environment. Journal of Computational and Cognitive Engineering.

[11] Dolhpolov, S., Honcharenko, T., Hots, V., Kruk, P., & Porokhovnichenko, I. (2023). YOLOvVS,
YOLOvV9, and YOLOv10: A Study in Automated Vehicle Damage Detection.

162



[12] Mittal, R., & Garg, A. (2020, July). Text extraction using OCR: a systematic review. In 2020
second international conference on inventive research in computing applications (ICIRCA) (pp. 357-
362). IEEE.

[13] Yindumathi, K. M., Chaudhari, S. S., & Aparna, R. (2020, July). Analysis of image classification
for text extraction from bills and invoices. In 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.

[14] Ghael, H. D., Solanki, L., & Sahu, G. (2020). A review paper on raspberry pi and its applications.
International Journal of Advances in Engineering and Management (IJAEM), 2(12), 4.

[15] Jamil Alsayaydeh, J. A., Chuin Jie, T. L., Bacarra, R., Ogunshola, B., & Yaacob, N. M. (2025).
Handwritten text recognition system using Raspberry Pi with OpenCV TensorFlow. International
Journal of Electrical & Computer Engineering (2088-8708), 15(2).

[16] Memon, J., Sami, M., Khan, R. A., & Uddin, M. (2020). Handwritten optical character recognition
(OCR): A comprehensive systematic literature review (SLR). IEEE access, 8, 142642-142668.

[17] Chen, C., Isa, N. A. M., & Liu, X. (2025). A review of convolutional neural network based methods
for medical image classification. Computers in Biology and Medicine, 185, 109507.

[18] Ahmadzadeh, M., Zahrai, S. M., & Bitaraf, M. (2025). An integrated deep neural network model
combining 1D CNN and LSTM for structural health monitoring utilizing multisensor time-series data.
Structural Health Monitoring, 24(1), 447-465.

[19] Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo algorithm developments.
Procedia computer science, 199, 1066-1073.

[20] Borji, A., Cheng, M. M., Hou, Q., Jiang, H., & Li, J. (2019). Salient object detection: A survey.
Computational visual media, 5, 117-150.

[21] Amit, Y., Felzenszwalb, P., & Girshick, R. (2021). Object detection. In Computer vision: A reference
guide (pp. 875-883). Cham: Springer International Publishing.

[22] Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object detection in 20 years: A survey.
Proceedings of the IEEE, 111(3), 257-276.

[23] Llugsi, R., El Yacoubi, S., Fontaine, A., & Lupera, P. (2021, October). Comparison between Adam,
AdaMax and Adam W optimizers to implement a Weather Forecast based on Neural Networks for
the Andean city of Quito. In 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM) (pp.
1-6). IEEE.

[24] Zhu, W., & Chapman, R. (2019, April). Stereo-vision-based collision avoidance simulation. In Pro-
ceedings of the 2019 ACM Southeast Conference (pp. 156-159).

[25] Lin, Q., Ye, G., Wang, J., & Liu, H. (2022, January). Roboflow: a data-centric workflow management
system for developing ai-enhanced robots. In Conference on Robot Learning (pp. 1789-1794). PMLR.

163



Development of Real-Time Embedded Application

for Drone System
Abderraoufe Zerrouk ' and Hicham Medkour?

'1LCDEP Lab, FEE, USTHB , Bab Ezzouar—Algiers,Algeria, azerroukl@usthb.dz
2Div, Educative Technology, INRE, Oued Romane El Achour—Algiers, Algeria,
medkour. htcham88@gmail.com

Abstract

This paper represents a contribution within the framework of the development of an electronic
system for piloting a drone. The latter is intended for inspection and monitoring tasks using a video
camera. The system in question is built around a microcontroller and makes use of the FreeRTOS
real-time kernel that allows to manage the various tasks running in parallel, as well as the physical
resources of the system. The short-term objective is to set up a preliminary version of this system,
which allows to: read the state of the sensors involved in the control of the drone; to manage the
wireless transmission of acquired visual data to a web server, the latter playing the role of a ground
control and reception station.

Keywords: Drone, FreeRTOS, Real-Time Applications,Embedded system

1 Introduction

Unmanned Aerial Vehicles (UAVS), commonly known as drones, have gained significant attention in
various fields, including surveillance, disaster management, and security applications. Their ability to
provide real-time monitoring, access remote or hazardous areas, and reduce operational costs makes them
highly valuable in both civilian and military domains. In disaster management, drones assist in assessing
damage, locating survivors, and delivering critical supplies in hard-to-reach areas. Similarly, in security
applications, they enhance border surveillance, traffic monitoring, and crowd control, improving overall
situational awareness [1]. Despite these advantages, the widespread adoption of surveillance drones faces
several challenges. High production costs, robustness to environmental conditions, power consumption,
security vulnerabilities, and computational performance are key concerns in drone development. Ef-
ficient power management is crucial, as surveillance missions often require prolonged flight durations.
Furthermore, the increasing complexity of real-time video processing and Al-based threat detection ne-
cessitates high-performance embedded computing with low energy consumption. Additionally, ensuring
secure communication and data integrity is essential to prevent cyber threats and unauthorized access to
sensitive surveillance footage. Recent research has focused on addressing these challenges by improving
drone efficiency and intelligence.

For instance, authors in [2-5] explored the integration of low-power Al-based image processing tech-
niques to enhance real-time threat detection while minimizing energy consumption.

Another in [6-8] proposed a robust UAV platform capable of operating in extreme weather conditions
with advanced energy optimization techniques. Moreover, authors in [9] introduced a novel lightweight
encryption framework for secure data transmission in surveillance drones. These works highlight ongoing
efforts to develop cost-effective, power-efficient, and secure drone systems for real-time applications.

To efficiently manage embedded computation and control, the implementation of real-time operating
systems (RTOS) in process management has become an essential practice in embedded systems [10].
The advent of free and open-source RTOS alternatives has further encouraged this approach, making
advanced real-time capabilities accessible to a wide range of developers and significantly reducing over-
all production costs. In the context of surveillance drones, RTOS plays a crucial role in optimizing
task scheduling, ensuring deterministic execution of vision processing algorithms, and managing power
consumption effectively.

In this article, we present a prototype of a real-time system, embedded in a drone, intended for
aerial inspection and surveillance. Based on a low-cost Arduino Mega microcontroller board, we propose
a preliminary version of our system that allows, on the one hand, scanning a set of sensors to pilot
a drone. On the other hand, it enables the acquisition of visual data from a camera module. The
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visual data, along with drone piloting information, is transmitted to a remote platform using dedicated
communication modules for later use in navigation, control, and decision-making.

2 system architecture design

The work for this project is divided into two parts: the first part involves developing a basic prototype
for managing a drone equipped with a camera; the second part focuses on setting up a system that com-
municates with the first, enabling data exchange and receiving the video stream captured by the camera.
Both parts are based on a microcontroller and include various input/output components. Additionally,
each part involves multiple concurrent tasks during the operation of the entire system, all of which are
subject to time constraints, some of which are more critical than others. In this section, we begin the
study of our project. We present the physical structure of the two parts and the execution mechanisms
for their respective tasks, aiming to achieve the desired functionality.
Figure 8 shows the decision boundary of the perceptron model.
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Figure 1: the structure of the system

The structure of our system is illustrated in Figure 1. However, the operation of the system cannot
be verified without the existence of an associated device that serves as a station for receiving inspection
and navigation data. Specifically, we have the embedded system on the drone and a ground station. The
embedded system includes the following elements:

e ESP32-Cam board, which integrates an ESP32 processor and a 2-megapixel OV2640 camera. Its
role is to transmit the video stream in real-time to a web server via a Wi-Fi connection. The start and
stop of transmission must be controlled by the Arduino board.

e NRF24 module for radio frequency transmission of data from the sensors integrated into the drone:
acceleration in the three axes provided by the accelerometer, angular velocity in the three angles provided
by the gyroscope, and temperature measured by a temperature sensor.

The ground station includes the following elements:
e A joystick for manual control of the drone.

e An NRF24 module for radio frequency transmission of control commands to the drone and reception
of data provided by the sensors integrated into the drone.

e An Arduino Mega board for managing the joystick and data movement via the NRF24 module, as
well as displaying the data.

e A PC equipped with dedicated graphical interface to display sensor’s data and to control the video
acquisition at the drone level. The PC is connected to the Arduino board via a serial connection.

e A Wi-Fi router to establish connection between the camera and the PC.

2.1 Software architecture

Each of the two devices that make up our global system is associated with a software component,
as they are based on microcontrollers (those mounted on Arduino boards). Each component can be
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viewed as architecture composed of several tasks that execute according to a specific pattern. To achieve
this, FreeRTOS provides a software platform that ensures synchronization of execution and interaction
between different tasks and with the physical resources of the hardware platform.

In the drone section, we mention the following four (4) tasks:

e Starting and stopping streaming task (SSST): The state of the video streaming system is determined
by the Arduino board.

e Data acquisition task (DAT): It involves collecting data from the accelerometer, gyroscope, and
temperature sensor.

e Data transmission task (DTT): The data collected by the previous task will be sent via the NRF
module.

e The command reception task (CRT): This task consist of receiving joystick data on the three axes
X, Y, and Z.

For the ground station part, we identify the following four (4) tasks:

e Data Reception Task (DRT): This task is responsible for receiving acceleration and angular speed
data on the three axes from the sensor via NRF.

e Data Display Task (DDT): This task ensures the visualization of sensor data within a graphical
interface on a PC.

e Command Transmission Task (CTT): This task involves sending joystick data from the station to
the drone.

e Start and Stop Streaming Task (SSST): This task refers to a command sent to the drone via the
NRF module corresponding to 0 and 1 value for start and stop respectively

2.2 Tasks scheduling by FreeRTOS

FreeRTOS is based on pre-emptive scheduling algorithms with priority levels. To illustrate the execution
mechanism of all previously described tasks according to this scheduling policy, we assume that all tasks
arrive at time t = 0. The execution time and deadline for each task in both system components (drone
and ground station) are estimated as follows:

The drone:

e CRT: Arrival at 0, execution time 2, deadline 4, period 4, priority 1.

e DAT: Arrival at 0, execution time 1, deadline 5, period 10, priority 2.

e DTT: Arrival at 0, execution time 1, deadline 5, period 10, priority 3.

e SSST: Arrival at 0, execution time 2, deadline 10, period 10, priority 4.

The scheduler first selects the CRT task, as it has the highest priority, and it executes within the
interval [0:2]. At this point, the DAT task executes within the interval [2:3], followed by the DTT task,

which executes in the interval [3:4]. The SSST task then executes in the interval [6:8], and so on (Figure
2).
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Figure 2: Tasks scheduling in the drone system

In this part, we will present the detailed operation of the device, where we will examine how task
scheduling is performed, as well as the management of tasks by FreeRTOS.

First, a memory space called a queue must be reserved by the FreeRTOS operating system. The
sensor data acquisition task (DAT) stores the accelerometer, gyroscope, and temperature data in the
queue. Once the DAT task has completed storing data in the queue, the sensor data transmission task
(DTT) retrieves the sensor values stored in the queue, as described in Figure 2. The start and stop of
video streaming are managed by the streaming start and stop task (SSST). The operation of this task
consists of the processor must first check whether there is a start or stop command. If a command is
present, its value is evaluated to determine whether to start or stop the streaming. Otherwise, or if no
command is received, the task completes, and the operating system restores the execution context.

The command reception task (CRT) has the highest priority, as it is responsible for receiving joystick
commands sent from the control station. These commands are then used to control the drone.

while in the control station all tasks are modeled as following:
e (CTT): arrival at 0, execution time 2, deadline 4, period 4, priority 1.

e (DRT): arrival at 0, execution time 1, deadline 5, period 10, priority 2.
e (DDT): arrival at 0, execution time 1, deadline 5, period 10, priority 3.
e (SSST): arrival at 0, execution time 2, deadline 10, period 10, priority 4.

The scheduler first selects the CTT task, as it has the highest priority. It executes in the interval
[0:2], at which point the DRT task takes control of the processor in the interval [2:3]. Next, the DDT
task executes in the interval [3:4], and the SSST task executes in the interval [6:8] (Figure 3).
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Initially, a queue memory must be allocated for storing and sharing sensor data. The sensor data
reception task (DRT) receives sensor data from the NRF module. Once this function is completed,
the DRT task proceeds to store each data point in the queue. Another task for displaying sensor data
(DDT) can access this queue after the DRT has completed storage. This task is responsible for sending
the stored data to the PC via the serial communication.

The command transmission task (CTT) is the highest priority in this device. It retrieves the joystick
control signals and redirects them to the drone through the NRF module. in the other hand, The
Start/Stop streaming task (SSST) is responsible for sending the value 1 or 0 to enable or disable access
to the camera. Depending on the command pressed by the user through the graphical interface (START
or STOP).

3 Implementation and Testing

This section covers the implementation and testing steps of our system. We explain, for this purpose the
different diagrams. Then we elaborate the operation mode of the used modules and their implementation.
Finally, we present the various experiments and significant outcomes.

As part of our project, we used a type of sensor known as an IMU (Inertial Measurement Unit). This
is an electronic device that measures and reports the specific force of a body and the angular velocity
using a combination of axis accelerometers and three-axis gyroscopes, where the returned values are
analog. The accelerometer measures acceleration forces such as gravity applied along each axis. The
gyroscope measures the angular rotation rate for each axis. Moreover, the Figure 4 shows the wiring
with the Arduino board
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Figure 4: Wiring diagram of the MPU 6050 sensor with the Arduino Mega 2560

The NRF24L01 radio module is a low-power transceiver designed to wirelessly transfer data from
one device to another over the 2.4 GHz frequency band. It enables efficient communication between two
devices over a medium distance (50m) in an open environment. The NRF24L01 module uses the SPI
protocol to communicate with the microcontroller and must be powered between 1.9V and 3.6V.However,
the Figure 5 reveals the wiring diagram with the Arduino mega board. Where the microcontroller
communicates with the module only through the three SPI communication lines. The CSN and CE pins
can be connected to any digital pin on the Arduino board; they are used to set the module to ’locked’
or ’active’ state, as well as to switch between transmission and command mode. The last pin is for
interrupts, which has not been used.

Arduino Mega - NRF24L01
3.3V -VCC
GMD - GND
B-C5N
7-CE
52 - 5CK
571 - MOS|
50 - MISO

Figure 5: Wiring diagram the NRF24L01 module with the Arduino Mega

The joystick is a position sensor that returns two analog values representing its X and Y positions.
It can be used as an interface for navigating a menu or controlling an object in terms of direction or
speed. It is commonly found on video game controllers, remote controls for modeling, and industrial
machine control panels. It consists of two potentiometers positioned to detect the horizontal and vertical
components of the joystick’s movement. The resistance values of the potentiometers vary independently
depending on the joystick’s position. As shown in Figure 6, the analog pins Vx and Vy of the joystick
are connected to the analog pins A0 and A1l of the Arduino board. The digital pin SW is connected to
pin 5 of the Arduino board.
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Figure 6: Wiring the Joystick Module with the Arduino Mega

The first test consists of verifying the operation of the visual navigation process. For this purpose,
we establish a WiFi connection between the camera (assumed to be mounted on a drone), which acts as
a web server, and a PC with internet access. This operation simply involves viewing the content of the
IP address 192.168.43.33, which belongs to the camera, using a web browser. This allows us to see in
real-time the environment captured by the camera in one half of the web page displayed by the browser,
while the other half contains a set of tools for adjusting the display quality (Figure 7).

It should be noted that video streaming only becomes operational when the start button (Start) is
pressed. This button is located in the graphical interface, which has already been developed to manage
communication between the two parts of the system. Another button (Stop) is also available to stop the
streaming.

9:58 @ A A

® 192.168.43.33

e ——

Mo Effect B

Figure 7: streaming video

As it mentioned before, we have developed a graphical interface to manage communication between
the drone and the ground station. This work, which is part of our project, was successfully carried
out using the Microsoft Visual Studio development environment. The developed interface includes three

sections:

e Sensor Data Visualization: This section contains three fields to display acceleration values, three
fields to show angular velocities for the three axes (gyroscope), and one field for ambient temperature.

e Streaming Control: This section is designed solely to start or stop video streaming. It includes two
buttons: START STREAMING and STOP STREAMING.

e Communication Port Configuration: This section contains a field to specify the PC’s serial com-
munication port, another field to select the transmission speed, and two buttons to open and close the
port.
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Figure 8 shows a screenshot of the graphical interface during system operation. This represents the
second stage of testing conducted to demonstrate the proper functionality of our system.
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Figure 8: station interface

After conducting experimental tests, our project is deemed functional. The time constraints are well
respected, as the video streaming operates perfectly without affecting the exchange of other data between
the two parts of the system.

4 Conclusion

In this work, a designed and implemented a real-time multitasking system for the management of a drone
is presented. This system is primarily intended for inspection and control tasks based on ip camera. In
addition, the system includes a set of sensors that are used for the control and navigation of the drone.
We used a real-time operating system FreeRTOS to ensure the multitasking aspect that characterizes
such applications and to meet the associated time constraints. Explaining the mechanisms for managing
the various tasks of the system.As a perspective, we are considering the use of GPS for drone tracking as
additional task. We also plan to make the video surveillance system accessible through our own server,
in order to expand the areas of application
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Abstract

Balanced Boolean functions are a critical component in cryptographic systems, as they provide
the necessary nonlinearity to resist linear attacks. Generating such functions with high nonlinearity
is a challenging task, especially for functions with a large number of variables. In this work, we
employ genetic algorithms to generate eight-variable Boolean functions with high nonlinearity. Un-
like traditional algebraic methods, which often explore only a limited portion of the search space,
genetic algorithms leverage stochastic search techniques to explore a broader and more diverse set of
solutions. We introduce a novel encoding scheme for the genetic algorithm that enhances flexibility
and efficiency, enabling the generation of highly nonlinear Boolean functions in a shorter time frame.
This approach not only produces Boolean functions with high nonlinearity but also introduces an
element of randomness, making the generated functions less predictable and more resistant to cryp-
tographic attacks. Furthermore, the generated functions can be used to personalize cryptographic
algorithms, enhancing their security and adaptability to specific use cases.

Keywords: Computer security, Cryptography, Evolutionary Intelligence, Genetic Algorithms,
Boolean functions, S-boxes.

1 Introduction

The integration of artificial intelligence (AI) techniques, particularly Genetic Algorithms (GAs), into the
field of cryptography has garnered substantial attention since the late 1990s and early 2000s. This surge
in interest stems from the remarkable ability of GAs to address complex optimization challenges and
bolster the security of cryptographic systems. Within cryptography, GAs have found diverse applica-
tions, including key generation, cryptanalysis, the design of cryptographic algorithms, and the creation
of cryptographic objects such as Boolean functions and S-boxes.

Boolean functions play a pivotal role in cryptographic ciphers, serving as the primary source of non-
linearity. This critical characteristic has driven extensive research efforts focused on generating Boolean
functions with specific properties that enhance security. These optimized functions are then utilized in
the design and customization of ciphers. Given the vast search space of possible Boolean functions, Evo-
lution Intelligence optimization techniques, particularly genetic algorithms, have emerged as powerful
tools for identifying functions that meet desired criteria.

In order to contribute to this filed of research, this work proposes a new encoding scheme to derive
eight-variables Boolean function with high nonlinearity.

The reminder of this paper is structured as follows. The first section provides an introduction to
Boolean functions and explains how to calculate their nonlinearity. The second section offers a concise
overview of genetic algorithms, followed by a discussion of a specific variant of GAs in the third section.
Subsequently, we present our proposed algorithm, detailing its advantages and limitations. Finally, we
showcase our experimental results, demonstrating the effectiveness of our genetic algorithm in compari-
son to existing research. Through this exploration, we aim to contribute to the ongoing advancement of
cryptographic techniques leveraging Al-driven optimization methods.
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2 Boolean functions

2.1 Description

A Boolean function (BF) with n variables is a mathematical object that takes n binary inputs and
produces a binary output [3]. BFs are typically represented by using truth tables, which show the
output for every possible combination of inputs. For instance, Table 1 illustrates a truth table for a BF
with three variables, where the sequence of outputs forms the function’s value vector.

In cryptography, balanced Boolean functions, which have an equal number of Os and 1s in their outputs,
are especially valuable. Indeed, these kinds of BFs are the backbone of S-Boxes.

Another way to represent Boolean functions is through the algebraic normal form (ANF), which writes
the function as a polynomial. Because the inputs are binary, the polynomial’s degree for each variable is
limited to one, and each term in the polynomial corresponds to a specific combination of input variables.
This ANF representation is particularly useful in fields like coding theory and cryptography for analyzing
and working with Boolean functions.

21 | 22 | 3 | Decimal value | f(x1,x2,x3)
0 0 0 0 1

1 010 1 0

0 1 0 2 1

1 1 0 3 1
010 1 4 0

1 0 1 5 0

0 1 1 6 0

1 1 1 7 1

Table 1: Truth table of a Boolean function of 3 variables.

An n variable Boolean function f can be represented by its truth table as an array of length 2™, as
follows:

Entry 0 1 .. 2" —1
Output | £(0) | £f(1) | ... | f(2"—1)

Table 2: Truth table of a n variable Boolean function as an array of length 2"

In our work, we are dealing with eight-variables Boolean functions, which means that we have 28 = 256
entries.
The Hamming weight of a BF f is defined as:
HW(f) = Zmewﬁ f(x), in particular the Hamming weight of a balanced BF is 2771

The Hamming distance between two BF's is defined as :

d(f,9) = card{z, f(z) # g(x)}

2.2 Nonlinearity of a Boolean function

The nonlinearity of a Boolean function is a measure of how far the function is from being linear or affine.
It is defined as the minimum of the Hamming distance between f and the set of all affine functions (linear
functions and their complements) [9, 10]. The easiest way to calculate it is using the Walsh transform
which is a variant of the Fourier transform adapted for the binary field F5. It is calculated as follows:

Wi) = 3 (-1)f@ree,

©C€Fp
where:
e y € [} is a vector in the input space,

e f(x) is the value of the Boolean function at z,
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e 1 - x denotes the dot product of v and z in Fy,

° (—l)f(”“')*‘“‘““' represents the sign change based on the parity of f(z) + u - z.
The array containing the values of Wy(u) for u from 0 to 2" — 1 is called the Walsh spectrum.
The nonlinearity is expressed in term of the Walsh transform as follows:

1
NL(f) = 2”71 — imamue]}‘g

Wi (u)]

3 Genetic algorithms

Genetic algorithms (GAs) [1, 8, 11, 12] are a key component of evolutionary intelligence, that draws in-
spiration from biological evolution and natural selection. By mimicking how systems evolve over time to
adapt to their environments, GAs leverage the principal of “survival of the fittest” where only organisms
that are better adapted to their environment are more likely to survive, reproduce, and pass on their
traits to the next generations. Over time, this process leads to the emergence of traits that enhance
survival and reproduction.

The field of genetics began with Darwin and Wallace introducing their theory of natural selection
[4, 7] in 1858. Later, in 1910, Thomas Hunt Morgan contributed to the field by discovering mutations
through experiments on flies. His work demonstrated how simple changes in genes could occur, pro-
viding some individuals with a genetic advantage that allowed them to survive and pass on their traits
to future generations. However, it wasn’t until the 1920s that genetics truly flourished, thanks to the
contributions of three key pioneers: Ronald Aylmer Fisher, John Burdon Sanderson Haldane, and Sewall
Wright. Their work introduced the use of mathematics, including quantification and the calculation of
genetic frequencies, which became foundational to modern genetics.

GAs in their modern form were introduced by J. Holland [8] and his colleagues in 1975 as a way of
solving hard optimization problems using stochastic search. It can be used to offer good solutions in a
short amount of time, which is very efficient when the naive search is not feasible.

They are very efficient in representing optimization problems due to their simple way of representing
solutions as chromosomes which can take the form of an array, a matrix, a list, a tree, etc. Each
chromosome is composed of genes coding its characteristics. The set of all possible chromosomes is
called genotypic space which is closely related to the phenotypic space representing the solutions in their
original form. GAs fall into the category of metaheuristics using an initial pool of solutions, and their
usage differs from the other approximate methods in the way that solutions are combined to get new
ones.

GAs rely on three core operations: selection, crossover, and mutation. In selection, the fittest individuals
from a population are chosen based on their performance, ensuring that better solutions have higher
chance of passing their traits to the next generation. Crossover then combines genetic material from
selected parents to create new offspring, promoting the exploration of promising solution spaces by
merging advantageous traits. Finally, mutation introduces small, random changes to some offspring,
maintaining genetic diversity and preventing premature convergence to suboptimal solutions. These
iterative processes mimic natural evolution, gradually improving the population’s overall fitness until
an optimal or satisfactory solution is achieved. This approach is widely used in optimization, machine
learning, and engineering design to solve complex problems where traditional methods may struggle.
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Generation of the
initial population
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Figure 1: GA flowchart.

4 Multi-parent Genetic algorithms

A multi-parent Genetic Algorithm [6] is a variant of the standard Genetic Algorithm, which traditionally
combines only two parents to produce offspring. In contrast, the multi-parent GA extends this approach
by allowing the combination of three or more parents during the crossover process. This variant has
demonstrated its ability to outperform the standard GA in terms of convergence speed, often achieving
better results in a shorter amount of time. By leveraging the genetic material of multiple parents,
the algorithm can explore a broader search space, and potentially learns to discover more optimal or
near-optimal solutions.

5 Description of the proposed approach

The proposed algorithm is inspired by processor architecture principles, where the byte serves as the
foundational unit. The core concept involves partitioning the truth table of a Boolean function into
eight-bits bytes, enforcing strict balancedness by requiring each byte to contain exactly four zeros and
four ones. Given a 256-bit output, this divides naturally into 32 bytes, each of which must conform to
the 4-zero/4-one constraint. There are precisely 70 distinct valid configurations that satisfy this balanced
condition for a single byte, as enumerated in Table 3. To implement this, we construct a chromosome-like
encoding where each of the 32 bytes is represented as a gene, with each gene assuming an integer value
between 0 and 69—corresponding to one of the 70 admissible byte patterns. This structured approach
ensures both balancedness and efficient representation in our algorithmic framework.
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Encoding

0123456789012345678901234567890123456789012345678901234
A A A A A A A A A AN AN AN mmmmmo o TS T 001101010

Configuration

17171’071717170’171707170’1’071717071’170717071./07170717071707071707071717071717071707170717071707170’071707&
17170717171707171707171707071717nU71717071717&071707171707071707&/17071707171707171707&/1707171707Q1707O717Q
S A AT A A0S~ "1 0 "S- "S- 1T S0~~~ 0 0T~ 400 H~A—03 S~
SHA "0~ A A A A0 0 A AT A A0  S S A A A A A A S TS A~
S SsS - Ai A AAAA~A AT 0SS A A A A AA A~ 0SS S SSSSSS = = A
el e =R e R e R e R = = N I I N N = I = i = i St g S S R I L S M ML L S S A Sl e R = === R =l =R =R=l=R=R=N==R=R=N=]
o P e e e B e Sl B o Bl e Bl o Sl e e i o Bl e i o Bl e B o Bl e Bl e i o B e i o Sl e Bl o i e Bl e S o Bl e Ml B e i e i e Bl B e i B S B RS ISR VIR I S R e ]

Table 3: The 70 configurations for the encoding.
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Configuration Encoding
1,1,0,0,0,0,1,1 55
1,1,0,0,0,1,0,1 56
1,1,0,0,0,1,1,0 57
1,1,0,0,1,0,0, 1 58
1,1,0,0,1,0,1,0 59
1,1,0,0,1,1,0,0 60
1,1,0,1,0,0,0,1 61
1,1,0,1,0,0,1,0 62
1,1,0,1,0,1,0,0 63
1,1,0,1,1,0,0,0 64
1,1,1,0,0,0,0,1 65
1,1,1,0,0,0,1,0 66
1,1,1,0,0,1,0,0 67
1,1,1,0,1,0,0,0 68
1,1,1,1,0,0,0,0 69

Hereafter, we present the key components of the proposed genetic algorithm:

1. Pool size: We use an initial pool of 500 solutions generated randomly, employing the encoding
scheme described earlier.

2. Fitness function: The fitness function we use is [10]:

2" — freq(mazucry [Wy(u)))

fitness(f) = NI(f) + on )

The so defined fitness not only utilizes nonlinearity but also incorporates information from the
Walsh spectrum, making the selection more efficient. This is achieved by minimizing the occur-
rences of the maximum value until it disappears, resulting in a new maximum value in the Walsh
spectrum.

3. Selection: we use tournament selection where we pick 3 random individuals and we chose the
fittest as a parent, repeating until the mating pool is filled (with a selection rate of 0.02%).

4. Crossover: The multi-parent Genetic Algorithm we use employs a uniform three-parent crossover
mechanism. In this approach, each gene in the offspring has an equal probability (% chance) of
being inherited from any of the three parents. To facilitate this process, a mask is used, which
can take on three possible values: 0, 1, or 2. Each value in the mask corresponds to one of the
three parents and occurs with the same frequency, ensuring fairness in the selection process. This
mechanism generates six offspring in each crossover operation, significantly enhancing the diversity
of the population.
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Parent1|12 10]1?‘31[15‘11‘19[13‘2|
Parent2|1a 1U|12‘13‘3‘1‘4|13‘6|
Parant3|n 14|0‘21‘19‘17‘10|24‘22|
Wk |1 jofofz2]1]z2]o]1]z2]|
Oﬂspringl|16 1o|17‘z1‘3‘17‘19|13‘2z|
orfsprin92|u 10]17‘1&[19‘1‘19[24‘6|
c-ffsprmuz|12 1u|12‘21‘15‘17‘4|13‘22|
Uﬂspriﬁg-‘-|u 1n‘12‘31|19‘11‘4|24‘2|
orfspringﬁ|1z 14|0‘18‘15‘1‘10|13‘6|
Offspring 6 |16 14|O ‘31 ‘10|13‘2|

Figure 2: Three-parent uniform crossover.

5. Mutation: a random gene is chosen for mutation with a rate of 0.01. The value of the gene is
replaced by one of the remaining 69 possible values.

The design of the encoding scheme inherently ensures balancedness, meaning that the genetic mate-
rial from all the three parents is evenly distributed across the offspring. As a result, there is no need for
post-crossover corrections or adjustments, which simplifies the algorithm and improves its computational
efficiency.

By leveraging this multi-parent crossover strategy, the proposed algorithm achieves a more extensive
exploration of the search space, leading to faster convergence and higher-quality solutions compared to
traditional two-parent crossover methods. This approach is particularly advantageous in complex opti-
mization problems where diversity and exploration are critical to avoiding local optima.

6 Experimental results

To trial the effectiveness of the proposed GA, we conducted a series of experiments.

In the first experiment, the GA was able to find the Boolean function with the genotype:

39, 4, 15, 64, 49, 60, 11, 27, 19, 0, 47, 7, 49, 35, 55, 61, 27, 58, 37, 36, 60, 0, 41, 67, 55, 67, 31, 24, 59, 5,
33,8

This solution is equivalent to the phenotype:
1,0,01,0,0,1,1,0,0,0,1,1,1,1,0,0,1,0,0,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0, 1,0, 1, 0, 1,
1,00,1,1,0,0,0,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,0,1,1,0,0,0,0,1, 1, 1, 1, 1, 0,
1,0,0,1,1,0,0,0,1,0,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0, 1, 1, 1, 1, 0,
1,0,0,0,1,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0, 1, 1, 1, 1, 0, 0,
1,1,0,0,0,0,0,0,1,1,1,1,1,0,0,1,0,1,1,0,1,1,1,0,0,1,0,0,1,1,0,0,0,0, 1, 1, 1, 1, 1, 0, 0,
1,0,0,0,1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,1,1,0,0,1,0,1,0,0,0,1,0,0, 1,1, 1,0, 1, 1, 1, 0, 1,
0,0,0,0,1,0,1,1,1,0

This solution has a high nonlinearity of 116.
In the second experiment, the GA reached the Boolean function with the genotype:
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54, 48, 22, 39, 15, 37, 5, 65, 46, 64, 33, 53, 34, 38, 59, 44, 18, 55, 0, 68, 61, 41, 18, 40, 37, 66, 43, 13, 42

35, 18, 36
This solution is equivalent to the phenot
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13, 69, 49, 0, 30, 40, 21, 57, 28, 48, 56, 25, 10, 12, 27, 44, 18, 9, 17, 27, 57, 34, 20, 65, 31, 12, 62, 10, 46

In the third experiment, the GA found the Boolean function with the genotype:
66, 20, 34

This solution is equivalent to the phenotype:
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In the fourth experiment, the GA determined the Boolean function with the genotype:
23, 56, 36, 46, 38, 33, 53, 28, 18, 10, 45, 13, 46, 53, 9, 48, 0, 59, 38, 11, 3, 16, 31, 20, 63, 11, 60, 27, 27,
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It is important to mention that so far, there is no proof of the existence of a balanced Boolean func-

tion with eight variables having a nonlinearity of 118 [10].

Table 4 presents a comparison of the best-achieved solutions with those of the literature, in term of

nonlinearity.

Nonlinearity

114
116
116
116

Refrence

[13]

Proposal

Table 4: Comparison in term of nonlinearity

For instance, in [13] [2], the authors generated their solutions using bent functions, which are non-
balanced Boolean functions with high nonlinearity. They made minor modifications to these functions,

essentially working within the neighborhood of a bent function. This raises questions about their se-

curity, as such solutions lack true randomness and may not be as secure as they appear.

In contrast,

introduces greater randomness. Indeed, unlike methods that rely on algebraic properties, the proposed

the proposed approach generates Boolean functions from scratch using Evolutionary Intelligence, which
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GA disperses the solutions more widely across the search space. Furthermore, the devised GA leverages
the inherent randomness of stochastic optimization, thanks to the proposed encoding, resulting in more
robust and less predictable BF solutions.

7 Conclusion

The use of genetic algorithms is a powerful approach for generating random Boolean functions with de-
sirable properties, such as high nonlinearity. Boolean functions play a critical role in enhancing security
by introducing complexity and filtering mechanisms, making it more difficult for attackers to decipher
cryptographic systems.

The proposed approach, which specifically targets balanced Boolean functions that are widely used in
cryptography, was able to generate high-quality Boolean functions efficiently.

In future work, we plan to explore improvements to the proposed genetic algorithm by incorporating ad-
ditional metaheuristics, such as Stochastic Local Search, to further enhance the quality of the generated
functions.
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Abstract

Learning Management Systems (LMS) are defined as web-based platforms designed to facilitate
the planning, delivery, management, and assessment of educational courses and training programs.
These systems provide a structured virtual environment where learners, instructors, and administra-
tors can interact through various tools. With the advent of artificial intelligence, several approaches
have been explored to reshape and adapt LMS functionalities, enhancing their ability to meet the
growing demand for Al-based tools in various pedagogical activities. Among existing LMS platforms,
Moodle is one of the most widely used. It facilitates online education and offers a rich array of tools.
However, feedback from computer science students highlights both its strengths and areas for im-
provement, particularly in terms of usability, engagement, and automation. This paper analyzes
student feedback and examines how artificial intelligence (AI) can address common challenges in
Moodle. Furthermore, it discusses potential Al-driven enhancements based on student insights and
proposes recommendations for future research and implementation.

Keywords: Learning Management systems, Moodle, Student’s perception, Artificial Intelligence.

1 Introduction

The rapid advancement of information and communication technologies (ICTs) has significantly trans-
formed various aspects of daily life, including education. Over the past decades, learning environments
have evolved in response to major technological shifts, such as the rise of the internet, the introduction of
Web 2.0 applications, and more recently, the emergence of artificial intelligence (AI)-driven tools [13, 31].
These developments have reshaped how educational content is delivered, accessed, and personalized.

In particular, Learning Management Systems (LMS) have become essential in modern education,
enabling institutions to manage courses, facilitate communication, and support online learning. LMS
platforms accommodate various teaching and learning methodologies, offering tools for content deliv-
ery, assessments, collaboration, and administrative management. However, as technology continues to
advance, LMS platforms must adapt to evolving educational needs and user expectations.

The COVID-19 pandemic accelerated the global reliance on LMS platforms, highlighting both their
strengths and limitations. Institutions worldwide were compelled to transition rapidly to online learning,
revealing challenges related to usability, student engagement, automation, and scalability [22]. Among
the widely adopted LMS platforms, Moodle stands out due to its open-source nature, flexibility, and
extensive adoption by universities and institutions worldwide, including in Algeria. Its features, such
as collaborative tools, integration with external applications, and customizable learning environments,
contribute to its success [11]. However, feedback from computer science students suggests areas for
improvement, particularly in terms of usability, functionality, and interactivity.

This paper explores the evolution of LMS platforms and examines how Al-driven enhancements could
address current limitations in Moodle. By leveraging intelligent tutoring systems, automated grading,
Al-powered chatbots, and adaptive learning algorithms, AI has the potential to enhance personalized
learning, improve engagement, and optimize administrative tasks. The insights presented in this paper
are based on reflections and feedback from Master’s level computer science students, who offer valuable
perspectives on potential improvements at various levels, including functionality, usability, and advanced
Al-driven features.

This paper aims to:

e Provide an overview of LMS evolution and highlight challenges in Moodle.

e Analyze student feedback to identify key areas for improvement.
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e Propose Al-driven enhancements that could improve interactivity, automation, and personalization.

The rest of this paper is organized as follows: Section 2 presents an overview on LMS and Al
integration. Section 3 presents the methodology used for gathering student insights. Section 4 outlines
key findings and proposed Al-based recommendations. Finally, Section 5 concludes the paper.

2 Background

2.1 LMS Overview

A Learning Management systems (LMS) is defined as virtual environment that aims to simulate face-
to-face learning environments with the use of Information Technology applications, and customizable
learning environments, contribute to its success [27]. The interactions among different users (student,
teacher, administrative) happen through the system that provides synchronous or asynchronous com-
munication tools. LMS provide a large plethora of functions allowing the creation of different strategies
and learning modes and to engage learners.

Registration &
Assessment Administration

Course Learning c
material Management ontent
delivery
System
Tracking of

Collaboration learning

Figure 1: LMS functions

Learning Management System (LMS) are designed to include several components that support online
education course administration, and student engagement [29, 19]. The main functions of an LMS are
depicted in Figure 1. Course registration and administration module manages user roles, course enroll-
ment, group organization, scheduling, and authentication. Content delivery enables both synchronous
and asynchronous learning, supporting various formats such as videos, interactive materials, and allow
students to engage flexibly with course content by offering possibility to connect with different devices.
To monitor progress, LMS platforms integrate tracking and learning analytics, providing insights into
student engagement, course completion rates, and attendance. Another essential component is collab-
oration and communication, which fosters interaction through chat systems, discussion forums, shared
calendars, and resource-sharing tools, while also offering advanced collaboration features such as wikis
and co-creation workspaces. Effective course material management ensures that educational resources are
organized, and accessible, integrating with different types of repositories. Finally, the assessment and
evaluation module facilitates automated quizzes, peer reviews, Exams, and competency-based assess-
ments, allowing instructors to efficiently measure learning outcomes. Together, these components create
a comprehensive digital learning environment, enabling institutions to deliver engaging, interactive, and
structured online education.

2.2 Artificial Intelligence in LMS

With the advent of artificial intelligence applications, learning management systems through their com-
ponents have evolved to adapt to the new requirements. Several efforts have been made to improve the
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LMS function with artificial intelligence applications and tools [9, 7, 1].

This section aims to present the current utilization of Al in Learning Management Systems by explor-
ing the interaction of AI with every aspect of LMS and providing references supporting the integration
and elucidating the benefits and challenges of such endeavor. Table 1 illustrates Al enhancements for
every LMS components with supporting references.

Table 1: AT Enhancements for LMS Components

LMS Component AT Enhancements

Registration and Ad- | Al-based automated student registration [18], intelli-

ministration gent course recommendations [25, 21], and adaptive
scheduling [5, 15].

Content Delivery Personalized learning paths [33, 16], adaptive content
recommendations [8, 30], and real-time Al tutoring
[12, 34].

Tracking and Analyt- | Predictive analytics for student performance [20, 6],

ics engagement tracking [14].

Collaboration Chatbots for student assistance, automated discus-
sion moderation, and intelligent group formation
26, 24].

Course Material Man- | Assisted content organization, tagging and summa-

agement rization, and intelligent resource recommendations
[35, 23, 4].

Assessment and Evalu- | Automated essay scoring and plagiarism detection,

ation [2, 10].

The table 1 illustrates the availability of research on the integration of Al tools and applications to
enhance learning management systems (LMS) at different levels. It is worth noting that the integra-
tion of artificial intelligence in LMS has shifted significantly with the advent of generative AI. Indeed,
tools like ChatGPT have revolutionized LMS functionalities with their unique capabilities in natural
language understanding and content generation [28]. These advancements have enabled more interac-
tive and adaptive learning experiences facilitating Al-based tutoring and assistance, assessment, and
personalization.

Among existing platforms, Moodle is a fundamental tool in modern education, particularly in com-
puter science programs. It facilitates course management, content delivery, and student-teacher inter-
action. Al applications have been integrated into various aspects of LMS platforms through several
initiatives [17]. However, student feedback continues to highlight usability concerns, a lack of real-time
support, and difficulties in navigating and engaging with course materials. This indicates that the inte-
gration of Al tools remains an active research area. The aim of this study is to analyze feedback from
computer science students on Moodle and explore how Al technologies can enhance its functionality.

3 Methodology

This section outlines the research methodology used in this study. It begins by describing the research
model, followed by details on the context, participants, and data collection.

3.1 Research Model

This study is based on a qualitative research approach. Qualitative research focuses on understanding
meanings, experiences, and concepts from the perspective of participants. Its objective is to gain insights
into social phenomena, events, or complex issues. This type of research was adopted because it is best
suited to capture the different aspects of users’ reactions to the use of Moodle platform enabling the
evaluation of its strengths, weaknesses, and potential improvements [3].

To gather data, the study employs a questionnaire, which is one of the most commonly used tools in
educational technology research. The questionnaire consists of open-ended questions, allowing assessment
and qualitative insights. The collected responses are analyzed to identify trends, user satisfaction, and
key areas where Al-driven enhancements could improve the platform.
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3.2 Context and Participants

The study was conducted with final-year Master’s students from the Computer Science Department of
Boumerdes University. A total of 54 students participated in the survey. As young engineers and future
professionals, their insights are particularly valuable in identifying technical and functional improvements
for the Moodle platform. The questionnaire covered three main areas:

e Advantages of Moodle: Students were asked to identify key benefits of using the platform.
e Challenges and Limitations: Participants highlighted areas they think about as Moodle limitaions.

e Suggestions for Improvement: As computer science students, participants provided some directions
to enhance the platform.

The collected data was analyzed qualitatively to identify recurring patterns and common themes.
Additionally, percentage distributions were used to highlight the frequency of reported advantages and
challenges. The results provide insights and a base for recommendations for improving Moodle’s usability
and performance.

4 Results

This section presents students’ feedback related to the questions about advantages, inconveniences, and
possible improvements for Moodle. The last point serves as a basis to propose recommendations for
improvements by including Al tools and applications.

4.1 Strengths of the platform

The number of students responding to the question about Moodle advantages is twenty six (26 students).
The following key points emerged about the platform strengths: flexibility and accessibility, collaboration,
pedagogical support, security and data protection, and digital skills development. The data are reported
on Table 2.

The majority of students (88%) pointed out the advantage of the platform flexibility and accessibility.
The platform is open-source platform, free and highly customizable. Moodle supports distance learn-
ing by eliminating spatial and temporal constraints. The platform benefits also from an active global
community that provides extensive documentation and support. The platform is widely adopted by
universities, high schools, and businesses. The student also highlighted the advantage of collaboration.
Indeed, the platform enables extensive communication between students and teachers. with a rich range
of features from simple messaging and forums to more advanced features such as wikis. Coordination is
facilitated by planning tools such as shared agendas. Co-production, information sharing, and knowledge
management are also features that enhance collaborative work within the learning process, fostering an
interactive and engaging educational environment.

Pedagogical Support is mentioned as an advantage of Moodle. Diverse resource formats and eval-
uation methods are available, enabling teachers to monitor student progress, provide feedback, track
behaviors, and digitally assess assignments. The platform is widely used across various educational and
organizational contexts, fostering a large community of users and shared resourcese. Its features help
address challenges such as student absences by maintaining course records before, during, and after
sessions. With a wide range of integrated tools, online assessment methods, and compatibility with in-
stitutional learning environments, Moodle enhances both teaching effectiveness and student engagement.
Several students mentioned also security and data protection. The platform offers various mechanisms
to protect user data and ensure safe usage. It includes access control features to prevent unauthorized
access making Moodle a reliable choice for institutions that prioritize data protection in online learning
environments.

Finally, some students (15%) mentioned digital Skills development as an advantage of Moodle since
from their point of view Moodle contributes to the development of students’ digital skills by providing
an environment that encourages the use of technology in learning. The interaction with the platform
allow students to enhance their ability to navigate digital tools, manage online resources, and engage in
technology-assisted learning.
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Table 2: Advantages of Moodle as reported by students

Advantage % of Students
mentioning it

Flexibility and accessibility 88%

Collaboration 50%

Pedagogical support 65%

Security and data protection 38%

Digital skills development 15%

4.2 Weaknesses of the platform

The number of students who responded to the question of the platform weaknesses is 28. It is a different
group from the students who responded to the question of advantages. According to students feedback,
the platform suffers from several drawbacks that are categorized into four categories as depicted by
Table 3: Interface and Usability Issues, lack of personalization, socialization issues, and integration and
compatibility problems.

The issues with the interface and use were the most mentioned weakness. Students frequently ex-
pressed dissatisfaction with Moodle’s interface, describing it as unattractive, un-intuitive, and outdated.
Many reported difficulties navigating the platform. There is a strong demand for a more modern and
ergonomic design. Additionally, slow system performance and long loading times make access to learning
materials difficult. Several students expressed the need for technical support and training to help users
better navigate and utilize the platform’s features effectively. The second raised issue is related to per-
sonalization: Students highlighted Moodle’s limited customization options as a drawback. The platform
does not sufficiently adapt to students’ specific needs, making it difficult to adapt the learning experience.
Many users expressed a request for personalization, both in terms of content and page appearance, to
create a more engaging and individualized environment.

Students also raised the need for socialization: they highlighted the lack of features that enhance
social interaction, particularly the need for better support for group work. They also pointed out the
absence of more engaging activities inspired by social networks, such as the ability for students to publish
content and collaborate on co-produced materials. Problems related to integration and compatibility
are also reported by students. Students reported difficulties in integrating Moodle with external tools
such as Google Drive, Slack, and Zoom, which are highly used in their learning activities. Issues with
mobile compatibility are also mentioned , noting that the platform does not always function easily on
smartphones and the lack of proper synchronization across devices makes it difficult to use.

Table 3: Weaknesses of Moodle as reported by students

Weakness % of students
mentioning it

Interface and usability issues 88%

Lack of personalization 46%

Socialization issues 23%

Integration and compatibility problems | 23%

4.3 Suggestions for Moodle improvements

The objective of this section is first to present students’ suggestions according to the raised issues. These
suggestions with the weaknesses that are pointed out by students serve a a basis to some recommendations
about the use of Al to enhance the platform.

4.3.1 Suggesions from students

The word cloud (see Figure 2) visually represents the most frequently mentioned suggestions from stu-
dents regarding Moodle’s improvement. The larger words indicate the most common themes, highlighting
key areas of concern and potential enhancements. From this visualization, it is evident that students
prioritize aspects such as interface modernization, personalization, integration with other tools, and per-
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Figure 2: Word cloud from students suggestions

formance optimization. These insights reinforce the need for a more intuitive and interactive learning
environment that aligns with user expectations.

While the word cloud effectively illustrates the most recurring themes in students’ feedback, it is
important to note that some valuable suggestions may not appear prominently due to lower mention
frequency. For instance, proposals such as integrating artificial intelligence for personalized learning,
providing instant feedback, or enhancing course recommendations were mentioned by a smaller number
of students but still represent innovative directions for improvement. These insights, though less common,
highlight valuable enhancements that could significantly impact Moodle’s users experience.

4.3.2 Recommendations for Improvements with Artificial Intelligence

To address the issues raised by students about Moodle, Al can be leveraged in several ways:

e Interface and usability issues: In response to this issue, the incorporation of artificial intelligence
could be used to predict user behavior in order to anticipate and address potential barriers to use
in UI design. This will not only improve the user experience, but also promote the development
of UI design in a more user-friendly and intelligent direction. In addition, advanced concepts such
as immersive environments in LMS can be explored [32]. Furthermore, virtual assistants to help
navigating the platform could be developed to enhance its efficiency and usability.

e Personalization: To enhance the personalization aspect in Moodle and provide a learning experience
adapted for students, several artificial intelligence approaches may be explored. While the course
are generally mandatory, recommendations may occur at the level of resources. In addition, the
use of expert systems and intelligent tutors that adapt to user needs are also a perspective suitable
to Moodle. Studies on Al in education show that intelligent tutoring systems and automated
assessment tools improve student engagement and learning outcomes. These tools can analyze
student performance and recommend personalized study materials, and adjust difficulty levels
based on student progress.

e Socialization: Several research directions and applications of Al are suitable to this concern. The
use of community detection tools may be used to form group discussions about academic topics or
homework for students. In addition, chatbots and discussion moderators can facilitate meaningful
conversations, ensuring that discussions remain relevant and productive. Sentiment analysis tools
may also be integrated to detect and address students’ concerns in forums, promoting a more
engaging and supportive learning environment.

e Integration and Compatibility Problems: AI can help with compatibility issues by automating con-
tent adaptation for different devices and browsers. Additionally, artificial intelligence can facilitate
communication between Moodle and other platforms, ensuring smooth data exchange and reducing
technical disruptions for both students and educators.
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5 Conclusion

Learning Management Systems (LMS) have revolutionized digital education by providing a structured
and interactive environment for learning. This study explored LMS platforms, particularly Moodle
through students’ perception. The platform offers numerous advantages such as accessibility, collabora-
tion, pedagogical support, security, and flexibility. However, student feedback reveals critical areas for
improvement, particularly user interface design, personalization, social interaction, and integration with
external tools.

The integration of Artificial Intelligence (AI) into LMS platforms presents an opportunity to address
these challenges and enhance the overall learning experience. Al applications and features such as
adaptive learning, intelligent tutoring systems, automated content recommendations, and predictive
analytics can significantly improve the students’ experience in LMS. Furthermore, the emergence of
Large Language Model (LLM) chatbots like ChatGPT can reshape student interactions within learning
environments. This paper provides some recommendations for the use of Al in Moodle. Future directions
of this research will addresss some limitations such as the inclusion of teachers perception, complete with
a quantitative research, and the effective development of improvements based on Al.
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Abstract

Biomedical datasets have grown exponentially with advancements in digital data acquisition and
storage technologies. This explosion of data has heightened the need for effective methods to un-
cover actionable insights, a task central to the field of data mining. Among data mining techniques,
clustering holds particular importance for its ability to group data into meaningful subsets, revealing
underlying patterns and critical features. In this paper, we present an improved version of the Sym-
biotic Organisms Search (SOS) algorithm, augmented with a novel Fitness-Distance Balance (FDB)
selection method. This enhanced algorithm is specifically adapted for the clustering of biomedical
data. The SOS algorithm, inspired by natural symbiotic interactions, excels at exploring solution
spaces to locate global optima. With the addition of the FDB method, the algorithm achieves supe-
rior efficiency and performance, overcoming challenges inherent in traditional clustering methods.

Keywords: Clustering, Symbiotic Organism Search Algorithm, Fitness-Distance Balance (FDB)
selection, I index, Biomedical data, Datamining, Metaheuristic.

1 Introduction

The rapid advancements in digital technologies have led to an unprecedented growth of large-scale
datasets, particularly in the biomedical field. Extracting actionable insights from these datasets is a core
objective of data mining, a discipline that involves analyzing data to uncover hidden relationships and
summarize information in innovative and practical ways. Clustering plays a pivotal role in data mining,
functioning as an exploratory analysis technique that organizes data into meaningful groups or clusters
[7]. These clusters reveal intrinsic data patterns, enabling better understanding and characterization of
datasets. Biomedical research, in particular, has benefitted from clustering algorithms, which are exten-
sively used to analyze gene expression data. Such analyses help identify groups of genes exhibiting similar
behavior, contributing to insights into complex biological processes and facilitating the development of
personalized medical treatments [1] . Clustering techniques can be broadly categorized into hierarchical
and partition-based approaches. Hierarchical clustering builds a tree-like structure (dendrogram) of clus-
ters, providing multilevel exploration and rich visualizations [1]. Despite its descriptive power, it suffers
from high computational complexity, which scales quadratically in the best-case scenario. Partition-
based clustering, exemplified by the popular K-means algorithm, offers greater computational efficiency
due to its linear complexity. However, K-means often struggles with random initialization, which can
result in suboptimal solutions [5]. Metaheuristics, inspired by natural phenomena, have gained promi-
nence for their ability to solve complex optimization problems like clustering [8], [2]. Among these, the
Symbiotic Organisms Search (SOS) algorithm, introduced by Cheng and Prayogo [3], has shown great
promise. The SOS algorithm models symbiotic interactions in nature, enabling efficient exploration of
solution spaces without requiring complex parameter tuning.

This study proposes an improved SOS algorithm for clustering biomedical data, integrating a Fitness-
Distance Balance (FDB) selection method [4]. The enhanced algorithm leverages the strengths of SOS
while addressing its limitations to achieve superior clustering outcomes. The FDB method enhances
the search process by balancing solution quality and diversity, leading to improved convergence and
clustering accuracy.
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The paper is organized as follows. Section 2 introduces the theoretical underpinnings of the proposed
approach, including a detailed overview of the SOS algorithm and its optimization mechanisms. Section 3
presents the improved algorithm, providing an in-depth explanation of its core components and workflow.
Section 4 discusses the results of numerical experiments, highlighting the algorithm’s effectiveness through
a comparative analysis with existing techniques. Section 5 concludes the study by summarizing key
findings and offering recommendations for future research directions. .

2 THE SYMBIOTIC ORGANISMS SEARCH (SOS) ALGO-
RITHM

The Symbiotic Organisms Search (SOS) algorithm is a population-based metaheuristic inspired by the
symbiotic relationships found in nature, such as mutualism, commensalism, and parasitism. SOS mimics
how organisms interact to improve their chances of survival and adapt to their environment. Like
traditional metaheuristics, the initial population in the SOS algorithm is generated randomly, with each
organism representing a potential solution to the problem at hand. During each iteration, the algorithm
simulates three primary types of symbiotic relationships: mutualism, commensalism, and parasitism, to
explore and optimize the solution space effectively.

e Mutualism Phase

In the mutualism phase, a new solution is derived for Oi (representing the i-th organism in the
ecosystem) and Oj (randomly selected from the population) by simulating mutualistic symbiosis. This
interaction models the mutual benefit between Oi and Oj, resulting in an updated solution calculated as
follows:

o
0

= O; +rand(0,1) x (Opest — mutuel_vec x bef) (1)
= 0; +rand(0,1) X (Opest — mutuel_vec x bef,) (2)

Inew

Inew

Here, rand(0,1) represents a vector of random numbers uniformly distributed within the range [0,1].
The benefit factors befl and bef2 are integers randomly assigned as either 1 or 2, indicating the level
of benefit received by each organism. The interaction between organisms Oi and Oj is represented by a
mutual vector, defined as:

@) = 0; + rand(—1,1) x (Opest — O;) ®)

tnew

The mutual vector represents the highest degree of adaptation, serving as the target point for improving
the fitness of both organisms. Accordingly, the organisms are updated only if their newly computed
fitness exceeds their fitness levels prior to the interaction.

e Commensalism Phase

Similar to the mutualism phase, a new candidate solution for Qi is generated based on the commensal
symbiosis between organism Oi and another randomly selected organism from the ecosystem. This
interaction is modeled using Equation (4). In line with the rules, Oi is updated only if the newly
calculated fitness improves upon its fitness prior to the interaction.

0 = 0; +rand(—1,1) X (Opest — O;) @

ine'w
o Parasitism Phase

In the parasitism phase, a parasite vector is created by modifying randomly selected dimensions of
the organism Oi. Another organism, Oj, is randomly chosen from the ecosystem to act as the host for the
parasite vector. The parasite vector competes to replace Oj in the ecosystem by attempting to achieve
a better fitness value. If the parasite vector’s fitness surpasses that of Oj , it ”kills” Oj and takes its
place in the ecosystem. Conversely, if the parasite vector’s fitness is inferior, it cannot survive and is
discarded. The SOS algorithm employs a population of candidate solutions to systematically explore
promising regions of the search space for the optimal global solution. Each iteration involves organisms
interacting randomly through the three symbiotic phases: mutualism, commensalism, and parasitism.
This iterative process continues until the specified termination criteria are satisfied.
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3 The proposed algorithm

In the SOS clustering algorithm, each solution is considered as an organism, represented by a matrix
with k rows and 1 columns. Each row of the matrix corresponds to the centroid of a cluster, and 1 denotes
the dimensionality of the concept space. The primary objective of the SOS algorithm is to identify k
optimal cluster centroids that minimize (or maximize) a given objective function. In this study, in order
to produce compact clusters, the fitness function, that calculates The I index, proposed by Maulik and
Bandyopadhyay [6], is used. It is given by the following formula:

I(K) = (II{ : EE—; : DK)P (5)

Where K is the number of clusters. Here,

K n
Ex =Y ujllz; — 2 (6)

k=1j=1

And .
Dy = max ||z — 2] (7)

Such that n is the number of data points in the dataset, U(X) = [ug;]kxn Is a partition matrix of the
data, and zj, is the centroid of the k-th cluster. Given the selected fitness function, the clustering task is
formulated as a typical maximization problem. To address the issue of premature convergence in the SOS
clustering algorithm, the Fitness-Distance Balance (FDB) selection method is employed. This method
calculates a selection score for each candidate by considering both its fitness value and its distance from
the best solution in the population. The FDB approach provides two key insights into the state of the
population:

e It identifies candidates that are very similar to the best solution.

e It highlights individuals with high fitness values, even if they differ significantly from the current
best.

Based on the first insight, the selection process avoids choosing candidates that are too similar to one
another, thereby maintaining population diversity. In other words, individuals occupying closely located
positions in the search space are not selected simultaneously. According to the second insight, the
method ensures that candidates capable of compensating for the weaknesses of the current best solution
are retained, thereby enhancing the exploration capability of the algorithm.

Given a population of n solution candidates O1,0as,..., 0O, the Fitness-Distance Balance (FDB)
method proceeds in two main steps. In the first step, the fitness value F'it(O;) of each candidate O;,
as well as its distance from the current best solution dist(O;, Opest), are calculated. Since a candidate
solution in the clustering problem consists of a set of k centroids, the distance between O; and Opcg; is
computed as the average distance between corresponding centroids. This approach captures the overall
similarity between candidate solutions by considering the mean positional difference across all centroids.

In the second step, a score is assigned to each candidate based on its normalized fitness Norm(Fit(0O;))
and normalized distance Norm(dist(O;, Opest)). A weight coefficient w, where 0 < w < 1, is used to
balance the influence of fitness and distance in the score computation. In this study, the weight is set to
w = 0.5, giving equal importance to both factors.

Two alternative equations can be used to calculate the score of a candidate in the FDB method:

e Linear combination (Scorel):

Scorel(0;) = w - Norm(Fit(0;)) + (1 — w) - Norm(dist(O;, Opest)) (8)

o Multiplicative combination (Score2):

Score2(0;) = Norm(Fit(O;)) - Norm(dist(O;, Opest)) (9)

Both formulations serve to guide the selection process by favoring candidates that either combine high
fitness with diversity (distance from the best) or strike a balance between the two. The initial population
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of the SOS (Symbiotic Organisms Search) ecosystem is generated randomly, where each organism rep-
resents a potential solution to the clustering problem. During each iteration, the algorithm sequentially
executes the three phases of the original SOS: Mutualism, Commensalism, and Parasitism. The detailed
steps of the ISOS-based clustering algorithm are :

e Randomly initialize the ecosystem with an initial population of organisms.
e Repeat until ¢ < MaxzGeneration or a stopping criterion is met:

— For each organism O; in the population (i =1 to eco_size):

1. Employ the FDB selection method to select another organism O; such that O; # O;.

2. Generate new candidate solutions for both O; and O; based on mutualistic symbiosis,
using Equations (1), (2), and (3).

3. If the modified organisms are fitter than their previous versions, replace them accordingly.

Employ the FDB selection method to select another organism O; such that O; # O;.

Generate a new candidate solution for O; based on commensal symbiosis, using Equation

(4).

If the modified O; is fitter than its previous version, accept it.

Employ the FDB selection method to select another organism O; such that O; # O;.

Generate a parasite vector from O;.

oo

® N o

9. If the parasite vector is fitter than O;, replace O; with the parasite.
— End For

e Identify the current best organism in the population.
e End While

e Output the best organism and its fitness value.

4 Experiments and results

The study employs three biomedical datasets: Breast A, NOVARTIS, and Breast B. Each dataset varies
in terms of the number of genes, samples, and predefined clusters. The Breast A dataset contains
98 genes and 1,213 samples, which are grouped into 3 clusters. The NOVARTIS dataset includes 103
genes and 1,000 samples, divided into 4 clusters. Finally, the Breast B dataset consists of 49 genes and
also 1,213 samples, organized into 4 clusters. To evaluate the effectiveness of the proposed algorithm,
ISOS is compared against the standard SOS. All tested methods were executed with a fixed population
size of 10 and a total of 100 iterations. For a fair and accurate comparison, the most commonly used
configurations and the best-performing settings were adopted, based on the guidelines provided in the
original publications. Table 1 presents the fitness values obtained using the ISOS and standard SOS
clustering techniques. The best results are highlighted in bold for clarity. The results in this table
clearly demonstrate that ISOS outperforms the standard SOS across all evaluated datasets. This superior
performance reflects the algorithm’s ability to maintain a diverse population and effectively explore new
regions of the search space. This can be largely attributed to the incorporation of the FDB selection
mechanism in ISOS, which enhances the standard SOS by reducing the risk of premature convergence
to local optima. Furthermore, the use of the selected fitness function contributes to generating more
compact and cohesive clustering results.

Datasets SOS ISOS
Novartis 25087.5751 | 25491.1220
Breast A 6.39510 6.57300
Breast B 5.54010 5.82124

Table 1: Comparison of SOS and ISOS results for different datasets.

A comparison of the convergence behavior of all the experimented algorithms on the NOVARTIS,
Breast A and Breast B datasets is seen in Figures 1, 2, and 3, in that order. It is clear from these
results that the suggested ISOS converges more quickly than the standard SOS. Therefore, ISOS is better
than the standard SOS algorithm.
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Figure 1: The Fitness function variation of ISOS and SOS clustering algorithms on Novartis dataset
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Figure 2: The Fitness function variation of ISOS and SOS clustering algorithms on Breast A dataset

5 Conclusion

In this study, we proposed an improved Symbiotic Organisms Search (SOS) algorithm, enhanced with
the Fitness-Distance Balance (FDB) selection method, for effective clustering of biomedical data. The
SOS algorithm, inspired by natural symbiotic relationships, provides a robust and flexible framework for
exploring high-dimensional solution spaces. By incorporating the FDB strategy, the proposed algorithm
successfully addresses the challenge of premature convergence often encountered in metaheuristic search
processes. The integration of the I index as a fitness function further ensures the formation of compact
and well-separated clusters, which is particularly beneficial in the context of biomedical datasets where
precision and interpretability are critical. Experimental evaluations demonstrate that the improved SOS
algorithm (ISOS) outperforms traditional clustering methods and baseline metaheuristic approaches in
terms of clustering quality and convergence behavior. Overall, this work underscores the potential of
nature-inspired optimization algorithms in handling complex biomedical data analysis tasks. Future
research may focus on extending the approach to dynamic and multi-objective clustering scenarios, as
well as exploring hybridization with other machine learning models to further enhance clustering accuracy
and scalability.
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Abstract

Cyber-physical systems (CPS) are an essential component of modern applications, but their en-
ergy consumption is a major challenge. This study aims to explore ways to improve the energy
efficiency of these systems by applying advanced artificial intelligence techniques. Our methodology
includes a comprehensive analysis of existing Al-based methods, with a focus on developing a model
that combines deep learning, multi-objective optimization techniques, and adaptive intelligence al-
gorithms. Through this research, we aim to provide a viable theoretical framework for enhancing the
sustainability of cyber-physical systems. The results of this study are expected to contribute to the
development of greener technologies in areas such as the Internet of Things and smart cities, while
maintaining system performance. Keywords: Cyber-Physical Systems, Energy Efficiency, Machine

Learning, Power Management, Multi-Objective Optimization, Adaptive Algorithms.

1 Introduction

The rapid evolution of digital technologies has catalyzed the widespread adoption of cyber-physical sys-
tems (CPS), marking a transformative shift in modern industrial infrastructure [1,2]. These sophisticated
systems, which seamlessly integrate computational algorithms with physical processes, have become the
backbone of Industry 4.0, revolutionizing sectors from manufacturing to healthcare [3,4]. The inherent
complexity of CPS, characterized by their ability to monitor, coordinate, and control physical entities
through integrated computational capabilities, presents both unprecedented opportunities and significant
challenges [5,6]. The energy efficiency challenge in CPS is multifaceted and requires innovative solutions
that go beyond traditional approaches. Recent advances in artificial intelligence, particularly in deep
learning, have shown promising results in addressing these challenges. Deep learning approaches such
as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Reinforcement
Learning (DRL), Deep Neural Networks (DNNs), and Transformer models have been applied to various
aspects of energy optimization in CPS with varying degrees of success. For example, CNNs have demon-
strated effectiveness in processing spatial data for energy-efficient sensor deployments, while RNNs excel
at capturing temporal patterns for energy consumption prediction. DRL has shown particular promise
in dynamic resource allocation and adaptive power management scenarios [12—-14]. The energy efficiency
of CPS is not merely an operational concern but a fundamental issue that impacts global sustainabil-
ity efforts [7]. Traditional approaches to system design and optimization have primarily focused on
performance metrics, often overlooking energy considerations. Recent studies indicate that CPS imple-
mentations have demonstrated remarkable potential in enhancing operational efficiency, with reported
improvements ranging from 15-40%.
The energy consumption challenge in CPS manifests across multiple dimensions:

e Computational Intensity: Modern CPS applications require increasingly complex algorithms
and real-time processing capabilities, leading to heightened energy demands [8,9].

e Network Operations: The continuous communication between cyber and physical components
contributes significantly to energy consumption, with studies indicating that network operations
can account for up to 30%.
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e Sensor Networks: The proliferation of sensors and actuators in CPS environments creates an
additional layer of energy consumption, particularly in large-scale deployments.

Traditional approaches to energy management in CPS have primarily focused on hardware-level
optimizations and basic power management strategies. While these methods have yielded modest im-
provements, they fail to address the dynamic and complex nature of modern CPS environments. Recent
research indicates that conventional energy optimization techniques achieve only 40-60% of potential
efficiency.

Artificial Intelligence (AI) has emerged as a promising solution for addressing these complex chal-
lenges. Recent advances in machine learning, particularly in deep reinforcement learning and multi-
objective optimization, have demonstrated significant potential for improving system efficiency. Studies
have shown that Al-driven approaches can achieve energy savings of 25-40% [15,16]. The integration of
deep learning techniques with traditional energy management strategies offers a comprehensive approach
that can adapt to the dynamic nature of CPS environments and optimize energy usage across multiple
system components simultaneously.

This research proposes an enhanced Al-driven framework that integrates advanced machine learning
techniques for workload prediction and optimization, multi-objective optimization strategies for bal-
ancing performance and energy efficiency, and adaptive intelligence mechanisms for real-time system
adjustment. The proposed framework seeks to address the critical challenge of energy efficiency in CPS
while maintaining optimal performance levels. The remainder of this paper is organized as follows:

Section 2 provides the foundations and key concepts related to CPS and energy efliciency Section
3 reviews related works in the field of energy optimization in CPS Section 4 presents our proposed
methodology for improving energy efficiency using deep learning Section 5 discusses the results and
applications Section 6 concludes the paper and suggests directions for future research

2 Foundations and Key Concepts

2.1 Cyber-Physical Systems (CPS): Overview and Structure

Cyber-physical systems (CPS) are systems that integrate physical processes and computation, where
digital and control systems interact with the surrounding physical environment through sensors and
smart devices. The structural and interactive design of CPS is essential to increasing the efficiency of
these systems, especially in industrial, medical and energy applications [10].

2.2 Energy Consumption Challenges in CPS

Energy efficiency is one of the most important challenges in cyber-physical systems, as it directly affects
the system’s continuity and performance. Challenges include how to manage energy consumption in
system components such as sensors, smart processors, and wireless communications, where reducing
energy consumption is vital in battery-dependent applications and in remote locations [11].

2.3 Role of Artificial Intelligence for CPS Optimization

Artificial intelligence (Al) is a key tool for improving performance and efficiency in CPS, as it can be used
to predict consumption and adapt control strategies. Al provides techniques such as machine learning
and neural networks that contribute to predicting energy demand and optimizing its distribution based
on changing patterns [12].

2.4 Metrics for Energy Efficiency in CPS

Energy efficiency metrics are essential tools for evaluating, analyzing, and improving energy consumption
in CPSs. These metrics help determine the current efficiency of the system and provide recommendations
for improving energy consumption. Common metrics include the power consumption-to-performance
ratio (P/W) and other qualitative and quantitative metrics that help guide system design decisions [13].
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3 Related Works

In this section, we provide a comprehensive review of literature focusing on deep learning approaches
for energy optimization in cyber-physical systems. This review categorizes existing works based on the
type of deep learning techniques employed and analyzes their effectiveness in addressing energy efficiency
challenges.

3.1 Deep Learning Techniques for CPS Energy Optimization

Recent research has explored various deep learning models for optimizing energy consumption in CPS.
These can be broadly categorized into supervised learning approaches, unsupervised learning methods,
and reinforcement learning techniques.

3.1.1 Supervised Learning Approaches

Supervised learning models, particularly CNNs and RNNs, have been extensively applied to energy
prediction and optimization tasks. Zhang et al. [17] proposed a CNN-based architecture for predicting
energy consumption patterns in industrial CPS environments, achieving prediction accuracy of 92.7%
while enabling preemptive power management. Similarly, Liu and Chen [18] developed an LSTM-based
model for smart grid applications that reduced energy consumption by 17.3% compared to traditional
forecasting methods.

3.1.2 Unsupervised Learning Methods

Unsupervised learning techniques have shown promise in identifying energy consumption patterns with-
out labeled data. Autoencoders and clustering algorithms have been applied to detect anomalies in
energy usage and identify optimization opportunities. Kumar et al. [19] employed a deep autoencoder
architecture to identify energy-intensive operations in manufacturing CPS, resulting in a 12.8% reduction
in overall energy consumption.

3.1.3 Reinforcement Learning Techniques

Reinforcement learning, particularly deep reinforcement learning (DRL), has emerged as a powerful
approach for dynamic energy management in CPS. Wang et al. [20] implemented a DRL-based controller
for adaptive power management in IoT devices, demonstrating a 28.5% improvement in energy efficiency
while maintaining quality of service requirements. Similarly, Martinez and Johnson [21] applied a multi-
agent reinforcement learning framework to coordinate energy usage across distributed CPS components,
achieving system-wide energy savings of 22.7%.

3.2 Temporal Analysis of Research Trends

In the last few years (2020-2024), the primary focus of research has been the application of advanced
artificial intelligence methods, such as reinforcement learning and deep learning, to enhance energy effi-
ciency in Cyber-Physical Systems (CPS). These methods aim to improve decision-making and resource
management dynamically, reflecting the shift toward Al-driven solutions to optimize real-time energy
consumption. This period marks a significant move towards practical AI applications, pushing the
boundaries of CPS efficiency. During the period from 2015 to 2020, research predominantly concen-
trated on foundational studies that laid the groundwork for CPS energy management. Many studies
focused on theoretical models, initial simulations, and preliminary methods. This period served as an
essential phase for exploring the feasibility of energy-efficient CPS designs, establishing baselines for
future advancements. Earlier research, before 2015, primarily focused on understanding and developing
the basic structure and design of CPS without a specific emphasis on energy efficiency. Studies from this
period contributed to defining the theoretical and structural elements of CPS, setting a foundation for
later work that would tackle efficiency challenges more directly. The goal of these early studies was to
build a solid conceptual and technical base, which later research would build upon to address real-world
applications.

InFigure 1 illustrates an energy prediction and optimization framework for smart homes that incor-
porates weather metric-weight coefficients. This model demonstrates how external environmental factors
can be integrated into energy optimization strategies for residential CPS applications. The framework
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Table 1: Summary of related research works (Part 1)

Article Authors Methods and | Energy efficiency
techniques used

Energy- Author 1 Energy efficiency | Moderate to good re-

efficient improvement  tech- | sults

computing niques

Low-cost re- | Author 2 Energy efficiency | Moderate to good re-

inforcement improvement  tech- | sults

learning niques

The impact | Author 3 Data intelligence us- | Refers to computing

of energy ing data analysis systems ability

efficiency

Low-Energy Various Strategies and design | Systematic applica-

Solutions tion

employs a multi-layer architecture that processes environmental data, user behavior patterns, and system
state information to generate optimal energy management decisions [14]. The integration of weather met-
rics as weighting coefficients represents an innovative approach to contextualizing energy management
decisions based on environmental conditions, resulting in more adaptive and efficient energy utilization.

3.3 Comparative Analysis of Existing Approaches

In this section, we review the literature that focuses on fundamental approaches to improving energy
efficiency in cyber-physical systems (CPS) and related environments. This review aims to provide a
comprehensive overview of the most important recent research conducted in this area. The criteria
adopted for comparison between the works and studies that were addressed are as follows: 1. Methods and
techniques used, 2. Energy efficiency, 3. Practical applicability, 4. Challenges and gaps, 5. Performance
and effectiveness.

In the last few years (2020-2024), the primary focus of research has been the application of advanced
artificial intelligence methods, such as reinforcement learning and deep learning, to enhance energy
efficiency in Cyber-Physical Systems (CPS). These methods aim to improve decision-making and resource
management dynamically, reflecting the shift toward Al-driven solutions to optimize real-time energy
consumption. This period marks a significant move towards practical AI applications, pushing the
boundaries of CPS efficiency.
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Table 2: Summary of related research works (Part 2)

Article Practical applica- | Challenges and | Performance and
bility gaps effectiveness

Energy- Well-fit for adaptiv- | Obstacles in genera- | Different methods

efficient ity tive use compared

computing

Low-cost re- | Low or moderate sen- | Alternation between | Different methods

inforcement sitivity shortness compared

learning

The impact | Minimize energy | Obstacles that limit | Relates to system re-

of energy | waste use sponse

efficiency

Low-Energy Suitability of specifi- | Increase necessity Examining  results

Solutions cations obtained

During the period from 2015 to 2020, research predominantly concentrated on foundational studies
that laid the groundwork for CPS energy management. Many studies focused on theoretical models,
initial simulations, and preliminary methods. This period served as an essential phase for exploring the
feasibility of energy-efficient CPS designs, establishing baselines for future advancements.

Earlier research, before 2015, primarily focused on understanding and developing the basic structure
and design of CPS without a specific emphasis on energy efficiency. Studies from this period contributed
to defining the theoretical and structural elements of CPS, setting a foundation for later work that would
tackle efficiency challenges more directly. The goal of these early studies was to build a solid conceptual
and technical base, which later research would build upon to address real-world applications.

4 Methodology

To address the challenges of energy efficiency in cyber-physical systems, this research proposes an en-
hanced Al-driven approach that combines advanced machine learning techniques, multi-objective op-
timization, and artificial intelligence strategies. The growing trend towards smarter and more energy-
efficient cyber-physical systems (CPS) requires innovative solutions that leverage the latest advancements
in artificial intelligence. This framework presents an integrated methodology that combines advanced
machine learning techniques, multi-objective optimization, and Al-driven strategies to achieve energy
efficiency in CPS.

4.1 Comprehensive Analysis

Conduct a systematic review of existing Al-based methodologies for CPS energy optimization, critically
evaluating their strengths, limitations, and different energy management strategies.

4.2 Framework Development

Design a theoretical framework integrating machine learning with multi-objective optimization tech-
niques. This framework will incorporate adaptive algorithms that can learn from system behavior and
environmental conditions to create a flexible and scalable solution for CPS energy management.

4.3 CPS Bridging

Identify critical gaps between theoretical models and practical implementation, proposing novel prac-
tical solutions applicable across diverse CPS environments, analyzing implementation challenges and
mitigation strategies.

4.4 Future Directions

Analyze emerging trends in CPS energy optimization, identify research opportunities in Al-based energy
management, and discuss potential technological advancements and their implications.
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Figure 2: Al-Driven CPS Energy Optimization Framework

The framework illustrated in Figure 2 presents an insightful hierarchical approach for AI-Driven CPS
(Cyber-Physical Systems) Energy Optimization, structured as an inverted pyramid with three key strate-
gic levels. The framework illustrates a methodical approach to advancing energy systems, beginning with
Comprehensive Analysis at the top tier, which forms the foundation for deeper investigation. This flows
into Framework Development as the middle stage, where theoretical findings are transformed into prac-
tical structures. Finally, it culminates in CPS Bridging at the base, representing the crucial integration
of cyber and physical components. This pyramid structure, labeled as ”"Future Directions,” suggests
a systematic progression toward more sophisticated and integrated energy optimization systems. The
framework cleverly emphasizes the interdependence of these three components, indicating that success
in future energy optimization will rely on the harmonious integration of analytical capabilities, robust
frameworks, and effective cyber-physical system integration. This approach appears particularly relevant
for addressing the growing complexity of modern energy systems and their optimization challenges.

4.5 Practical Implementation Framework

To demonstrate our methodology’s practical application, we present a reinforcement learning example
in energy optimization:

Figure 3 illustrates the reinforcement learning approach for energy optimization in CPS. This diagram
shows the interaction between the environment (the CPS) and the learning agent. The agent observes the
system state, including current energy consumption patterns, workload characteristics, and environmen-
tal conditions. Based on this observation, it takes actions to adjust system parameters such as processor
frequency, network transmission power, or sensor sampling rates. The environment then transitions to
a new state, and the agent receives a reward that reflects the balance between energy efficiency and
performance requirements. Through this continuous interaction and learning process, the agent develops
an optimal policy for energy management that adapts to changing conditions and requirements.

1. Data Collection Phase - Collection of performance indicators, system status monitoring, and
power consumption measurements

2. Prototype Development - Design of AI model architecture, definition of reward systems, and
input parameter optimization

3. Training Implementation - Integration of real-world experiences, simulation-based learning, and
model validation procedures
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Figure 3: A reinforcement learning example in energy optimization

1- Data collection: performance indicators,
system status, power readings.

I 2- Prototype: Determine rewards, design
neural network, define inputs.

3- Training: Real experiences, simulations.

I 4- Experiment: measuring results, testing
on part of the system.

I 5- Improvement: modify the model, analyze
the results.

Figure 4: Practical implementation steps

Figure 4 depicts the practical implementation steps for our proposed methodology. Each step
in this process is critical for translating theoretical frameworks into functional solutions. The
data collection phase establishes the foundation by gathering relevant system performance metrics
and energy consumption patterns. This data informs the prototype development phase, where
the AI model architecture is designed and optimization parameters are defined. The training
implementation phase incorporates both simulated and real-world experiences to build a robust
model. The experimental validation phase rigorously tests the model’s performance across various
operating conditions. Finally, the continuous improvement phase ensures that the system evolves
and adapts to changing requirements and environmental conditions over time.

4. Experimental Validation - Systematic testing protocols, performance measurement, and system
behavior analysis

5. Continuous Improvement - Model refinement based on results, system optimization, and per-
formance enhancement

4.6 Case Study: Smart Temperature Control System

Initial State: Room temperature monitoring at 22°C. Control Mechanism: Al-driven smart temperature
sensor optimizes heating/cooling. Monitoring System: Real-time monitoring with feedback loop. This
example illustrates how our framework adapts to real-time environmental changes, optimizes energy
consumption, provides continuous system feedback, and implements Al-driven decision-making.
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4.7 Comparative Analysis of Deep Learning Models for CPS Energy Opti-
mization

To provide a comprehensive understanding of the suitability of different deep learning approaches for
CPS energy optimization, we present a comparative analysis of the major model types:

4.7.1 Convolutional Neural Networks (CNNs)

CNNs excel at processing spatial data and identifying patterns in multidimensional inputs. In CPS
energy optimization:

Strengths: Effective for processing sensor data with spatial relationships, such as temperature dis-
tributions in buildings or energy consumption patterns across manufacturing floors. Limitations: Less
effective for time-series prediction without architectural modifications. Applications: Sensor placement
optimization, anomaly detection in energy consumption patterns, and image-based monitoring of physical
systems. Performance: Studies show CNNs can achieve 15-20% energy reduction in spatially distributed
CPS applications [22].

4.7.2 Recurrent Neural Networks (RNNs) and LSTM

RNNs, particularly LSTM variants, are specialized for sequential data processing: RNNs, particularly
LSTM variants, are specialized for sequential data processing:

Strengths: Excellent for time-series forecasting of energy consumption, capturing long-term depen-
dencies in system behavior. Limitations: Training complexity and potential computational overhead
during inference. Applications: Energy demand prediction, battery lifetime optimization, and temporal
pattern recognition in usage profiles. Performance: LSTM models have demonstrated 18-25% improve-
ments in prediction accuracy for energy consumption forecasting compared to traditional time-series
methods [23].

4.7.3 Deep Reinforcement Learning (DRL)

DRL combines reinforcement learning with deep neural networks for decision-making:

Strengths: Adaptive learning from environment interactions, ability to optimize for long-term ob-
jectives, and handle complex state spaces. Limitations: Requires careful reward function design and
extensive training data. Applications: Dynamic resource allocation, adaptive power management, and
real-time optimization of system parameters. Performance: DRL approaches have achieved 22-30%
energy savings in dynamic CPS environments while maintaining performance requirements [24].

4.7.4 Hybrid and Ensemble Approaches

Combining multiple deep learning techniques often yields superior results:

Strengths: Leverages complementary capabilities of different models, increases robustness. Limita-
tions: Increased system complexity and potential integration challenges. Applications: Comprehensive
energy management systems requiring both prediction and control capabilities. Performance: Hybrid
approaches combining CNN spatial analysis with LSTM temporal processing have shown 25-35% im-
provements in energy efficiency across diverse CPS applications [25] .

5 Discussion

Through this research, we aim to provide a viable theoretical framework for improving the sustainability
of cyber-physical systems. By examining the current state of CPS energy optimization and critically
analyzing the strengths and limitations of traditional solutions, we lay the foundation for our systematic
review. This analysis integrates advanced machine learning algorithms with multi-objective optimization
strategies to develop adaptive and energy-efficient solutions. The key motivations driving this research
include: The exponential increase in energy consumption in modern CPS applications and its envi-
ronmental impact. The inadequacy of traditional solutions in addressing complex energy management
challenges. The need for an integrated approach combining Al and energy management. The growing
importance of sustainable and eflicient operation in critical infrastructure. By addressing the challenges
of energy efficiency in cyber-physical systems, this enhanced Al-driven approach builds upon existing
research while introducing novel methodologies. We begin by examining the current state of the art
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in CPS energy optimization, critically analyzing the strengths and limitations of existing solutions, and
using these insights to form the foundation for our systematic review, which integrates advanced machine
learning algorithms with multi-objective optimization strategies.

6 Conclusion and Future Work

In this research paper, we have presented an enhanced Al-driven approach to improve the energy ef-
ficiency of cyber-physical systems. The proposed framework combines deep learning, multi-objective
optimization, and adaptive algorithms to create a flexible and scalable solution for CPS energy manage-
ment. The results of this study are expected to contribute to the development of greener technologies in
areas such as the Internet of Things and smart cities, while maintaining system performance.

In the future, we plan to expand the scope of this research by exploring the integration of additional
Al-based techniques, such as reinforcement learning, to further enhance the energy optimization capa-
bilities of CPS. Additionally, we will investigate the practical implementation challenges and develop
strategies to address them, ensuring the proposed solutions are applicable in real-world CPS environ-
ments.
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Abstract

Agent/Group/Role (AGR) is a minimal, generic and concise organizational model in multi-agent
systems used for designing and analysing the organization centred multi-agent systems (OCMAS).
The AGR model views multi-agent systems from an organizational perspective and presents a set of
general principles for designing true OCMAS. It consists on three main concepts that are agent, group
and role. Nevertheless, a significant challenge with this model arises from the presence of multiple
interpretations of the AGR model. This issue stems from its ambiguous and informal definition.
Numerous studies have suggested formalizing the AGR model through the utilization of formal
languages, including Category Theory, process algebras, the rewriting logic language (Maude), and
others. The main objective of this article is to formalize the AGR model using the formal language
DD-LOTOS. Because the DD-LOTOS language is defined with a maximality semantics (semantics of
true parallelism) and enables the support of temporal constraints and distribution, we subsequently
suggest the verification of specific properties using the UPPAAL model checker. This approach is
validated using the supply chain management case study.

Keywords: MULTI-AGENT SYSTEMS, ORGANIZATIONAL MODEL, MAXIMALITY SE-
MANTICS, DD-LOTOS.

1 Introduction

Multi-agent systems (MASs), specifically organizational models, represent a suitable paradigm for de-
veloping modern applications that are distributed, open, and dynamic [19]. They are applied in several
areas such as system transport, e-commerce, communication, robotics, e-learning, simulations, artificial
life, virtual reality, etc. [35]. Developing these systems necessitates exploring the analysis methods.

Two points of view are distinguished in MAS technology [7]. The first one is the classical agent-
oriented multi-agent systems (ACMAS) that focus on agents’ behaviours. In this type, the developer in-
terests in the behaviours of agents and their interactions without interesting the global system’ structure.
The agent organizations are not a prerequisite; instead, it emerges implicitly as a collective behaviour
resulting from the cooperative pattern among agents (emergent phenomena) [31].

The primary challenges associated with the ACMAS perspective revolve around unpredictability and
uncertainty. Consequently, this approach may not be appropriate for designing and engineering complex
multi-agent systems because it can give rise to undesirable emergent behaviours that might impact system
performance [37].

Recently, there has been a notable interest in incorporating organizational concepts within MAS
that play a significant role, such as ’functions,” ’groups,” ’communities,” ’organizations,’” ’roles,” etc.
[8][21][38][40]. We will talk about the second perspective in MAS engineering second perspective, known
as ’organization-centred multi-agent systems’(OCMAS).

The second perspective in MAS engineering is referred to as organization-centred MAS (OCMAS),
wherein the system’s structure receives greater attention through the explicit abstraction of agent or-
ganization. With this strategy, the designer is respomnsible for designing both the entire organization
and coordination patterns on one side, and the local behaviours of agents on the other side. In this
design paradigm, the agents within the organization possess awareness of the structure and state of the
system. This capability empowers them to manipulate primitives with the aim of modifying their social
environment [20].

Considering multi-agent systems in terms of organizational design differs from the agent-centred
perspective. An organization-oriented Multi-Agent System (MAS) is no longer based on mental states
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but only on organizational concepts such as roles, groups, tasks, and interaction protocols. This means
that it is possible to design frameworks for organizations where agents with different cognitive abilities
can interact.

Several organizational models for multi-agent systems have been used for modelling coordination such
as AGR [9], AGRE [10] , MOISE [11], AGRMF [36], and others. They are based on social structures
and organizational concepts to solve the problem of language heterogeneity.

The AGR model is one of the familiar organizational model adopted in modelling and analysing
organization centred multi-agent systems. Via its fundamental concepts, the AGR model provides an
intuitive approach to modelling complex, heterogeneous, and open systems.

The AGR model defines an organization as a structure of activities, where interactions are based
on the notions, roles, and relations of group agents. This model focuses on defining the structure of
an organization, including both groups and roles and does not deal with the architecture of the agent.
Rather, it emphasizes the function of each agent within the organization and their respective roles [8].

Despite its widespread use in MAS, the AGR model suffers from the lack of rigorous semantics for its
diagrams. However, this lack of precise definition can readily lead to imprecisions and misconceptions
that might hinder the analysis of the model, and also the development of valid systems. Thus, there is
a keen interest in proposing a precise semantics to eliminate all ambiguities associated with this model.

Many studies have addressed the formalization issue of organizational model. They rely on formal
methods to design and analyse organizational systems, such as process algebras [14], rewriting logic and
Maude [23], and Category Theory [2].

In our previous work [32], we are proposed a new formal multi-agent organization based on the
DD-LOTOS language. We have chosen this language compared to existing languages because: firstly,
it support the distributed aspect. Secondly, the DD-LOTOS language is based on a semantics of true
concurrency (maximality semantics) [34]. Thirdly, it supports the temporal constraints, such as urgency
of actions that permits verifying quantitative properties. In this study, we put forth the formalization of
the AGR model using the DD-LOTS specification. After generating the specification, we can formally
verify specific properties, such as deadlock, utilizing the UPPA AL model checker. The formal verification
approach is detailed in [28].

The rest of this paper is structured as follows: We investigate related work in Section 2. Then, we
present the organization and their features, organizational models and the DD-LOTOS formal language
in Section 3. We focus in Section 4 on interpreting of AGR model into DD-LOTOS language. Section 5
presents the automation of the proposed approach. The case study is illustrated in Section 6. Finally,
we end the document with a conclusion and future work.

2 Related work

Recently, studies have focused on formalizing organizational models. Despite the AGR model becoming a
standard in multi-agent systems modelling, it faces challenges due to a lack of formal semantics, resulting
in issues of inconsistency and ambiguity in models.

In this context, [23] put forward formal semantics to furnish rigorous specifications for the behaviour of
organizational models centred on multi-agent systems rooted in multi-agent systems, permitting users to
verify their correctness. The authors employed a rewriting logic language known as Maude to formally
specify Agent-Group-Role. This formalization brings additional advantages, including the capability
to simulate the specifications and provide access to the Maude toolkit for reasoning purposes. They
demonstrated their approach using a Supply Chain Management (SCM) case study.

[2] paper employs category theory to construct organizational multi-agent systems. The use of cat-
egory theory involves the study of collective phenomena in human societies and the formalization of
organizations to grasp their logic within categorical models. Subsequently, these captured models are
categorically mapped to organizational models. The approach enables analysing properties in obtained
MAS organizational models, such as adaptation and stability, before utilizing them as foundations for
developing organizational systems.

[6] provides a solution based on category theory to model, analyse, and verify organizations’ proper-
ties, especially those of Multi-Agent Systems (MASs). They have used category theory to categorically
study the organizations’ logic. In other words, their approach transforms the Agent-Group-Role (AGR)
organizational model into a categorical model to get a formal model representing the MAS organization.
The resulting formal model permits the analysis, verification, and validation of the principal properties
of an organization.
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[14] present a formal approach based on organizational concepts to harness these models and enhance
their re-usability. The formal notation is achieved through the combination of Object-Z and state-charts.
Transition systems define the semantics of this multi-formalism, enabling the validation and verification
of specifications. We illustrate this approach by specifying the satisfaction-altruism model, which has
been employed in the design of situated multi-agent systems. The existence of such generic models serves
as a fundamental foundation for reuse. Additionally, we demonstrate how to analyse the specification
through validation and verification.

In [13], the authors introduced a generic approach applicable to multi-agent systems. Their approach
requires the MAS to be described by an organizational model, with semantics specified within a formal
framework. The resulting model facilitates a straightforward description of individual and collective
aspects of multi-agent systems. They employ a framework based on a multi-formalism approach to
provide a formal description of their model, illustrating the approach through a case study.

3 Background

3.1 Features of Organizations

According to Jennings and Wooldridge [12], an organization is a group of roles that have specific rela-
tionships with each other and are involved in organized patterns of interactions with other roles. Based
on this definition, we can identify the principal features of organizations.

e An organization is made up of individuals who exhibit certain behaviours.
e The organization can be divided into partition groups, which may overlap.

e The behaviours of individuals are related to the overall activity of the organization.

Individuals engage in dynamic relationships, (patterns of activities).

The various types of behaviours are linked through relationships between roles.

3.2 Encouragements to MAS Organization

Multi-Agent System, is a group of agents that operate within a specific environment. These agents must
adapt to changes in their environment, communicate and cooperate with other agents, and work towards
achieving their objectives or the system’s objectives.

The OCMAS perspective has been advocated in the field of multi-agent systems (MAS) research by
many pioneers. For example, Jennings and Wooldridge [20] noted that MAS is a valuable contribution to
the Software Engineering (SE) discipline as it simplifies the design of complex software systems. However,
it is important to note that thinking MAS with no real structure is not appropriate for handling the
complexity of current software systems. Thus, the abstraction level must be used, and structuring the
community is generally required to decrease system complexity, and improve system efficiency.

In their work, Gutknecht and Ferber [9] claimed that one of the major issues for creating large and
complex systems is to treat organizational concepts (such as groups, structures, roles, and dependencies)
as first-class concepts and to relate them to the agents’ behaviour.

According to Ferber [9], defining a multi-agent system as an organization in which agents are grouped
and play specific roles to address challenges posed by system uncertainty, complexity, and dynamism.
Furthermore, Horling [16] noted that the use of organizational concepts within MAS, such as roles, groups
of agents, and communities can improve systems efficiency and scalability and reduce its complexity.

An organizational structure defines how agents should interact in a system, facilitates coordination
among agents in a MAS [4], and limits the scope of interactions. Moreover, Hiibner [17] proved that
organizations tune the agent’s autonomy level and furnish a framework to manage and structure agents’
interactions. Figure 1 shows a MAS from two levels, the lower agents’ level (individual level) and
organizational level (higher order abstraction).

The development of a multi-agent system (MAS) can be approached from an organization-centred
perspective. This involves defining a set of constraints that agents in the group can adopt to fulfil
their goals more efficiently. These constraints are referred to as an organizational model. With an
organizational model, the MAS can guarantee a certain level of efficacy and efficiency as the model
controls the agents’ behaviour and establishes a coordination mechanism [30]. Later section examines
various proposed models for MAS organizations.
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Figure 1: From individual level to organizational level in MAS

3.3 General Principles of Organizational Systems

In [9], Ferber presented the general principles from which organizational multi-agent systems can be
approached for design and analysis are:

e No assumptions are made about the nature of roles of agents or groups; the formalism is entirely
generic.

e Groups and roles constitute defined entities from the conceptual to the operational level. Mod-
ularity is reinforced by the fact that different roles within a group structure can be assumed
independently.

e The assumption of multiple roles by an agent in different groups is allowed. Groups can thus
overlap.

e The structuring induced by groups and roles provides an initial level of explicitness. The nature of
the content of roles is not specified.

3.4 Organizational Models

Recently, organizational models have been adopted to model coordination in complex systems [3]. They
should ensure the capacity of organizations to dynamically reorganize in response to dynamic changes
and how efficiently and effectively organizations carry out their tasks. In addition, the objective of
an organizational model is to improve the design and analysis of MAS, thus, it’s often incorporated
with a particular software engineering methodology. In the literature, there are numerous proposed
organizational models for multi-agent systems (MAS). Each model approaches the organization of MAS
from a different perspective. Some models utilize the agent based MAS viewpoint, while others utilize the
organization based MAS viewpoint. There are also some hybrid models that incorporate both the agent
based MAS and organization based MAS viewpoints. The next section explores some of the standard
organizational models proposed to model complex MAS.

AGR and AGRE organizational model Ferber[9] proposed a generic and concise organizational
model called AGR, which stands for Agent/Group/Role. This model is known as the AALAADIN model
[8]. Ferber offered a methodological framework and a set of notations to permit the designer to design
MAS with AGR. They also proposed a set of diagrams, such as the organizational structure, cheeseboard
diagram, and organizational sequence diagrams for presenting static and dynamic aspects of MAS. The
AGR model is based on three main concepts:

Agent: Conventionally, it is defined as an active, communicative entity with no assumptions about
its internal architecture. An agent takes on roles within groups. An agent can simultaneously assume
multiple roles in various groups (composition of roles).

Group: It is a set of agents interacting through their roles. A group is an instance of a group structure.
A group structure defines a set of roles that can be assumed within the group with interactions between
these roles. A group may instantiate only a portion of the roles defined by the group structure or
instantiate the same role multiple times. An agent becomes a member of a group by assuming a role.
Two agents can only communicate if they are members of the same group, and two groups can only
communicate through an agent they share.

Role: It is the abstract representation of the function of an agent within a group. Roles are local to
the groups in which they are defined. A role can be assumed in multiple instances and independently of
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other roles. The authors highlighted that the AGR model can be combined with Gaia’s [39] development
methodology to complete the analysis and design phases of MAS. Figure 2 shows the AGR meta-model.
In a separate publication, Ferber [10] introduced an extension of the AGR model, named AGRE which

GroupStructure RoleType
1
A
Group Role < plays Agent

1 < member of

Figure 2: The UML meta-model of AGR

incorporates physical environments (AGR with Environment). The AGRE model is founded on the idea
of a space that can be viewed as either a social group area or a physical area. Figure 3 shows the AGRE
meta-model.

Figure 3: The UML meta-model of AGRE

The AGR/AGRE models have several advantages, including support for heterogeneous communica-
tion languages and agent architectures. For more details on these models refer to [1].

3.5 Formal Methods

Formal methods are a collection of notations and techniques for describing and analysing critical systems.
These methods are called formal in the sense that they are based on mathematical theories, such as logic,
automata theory, and graph theory. They aim to improve the quality of system design.

Formal specification techniques allow for a precise and unambiguous description of system properties.
Formal analysis techniques can be used to verify whether a system satisfies its specification. They can
significantly reduce the risk of damage caused by design and specification errors in systems.

A formal specification of a system can aid not only in achieving a better (modular) description but
also in gaining a deeper understanding and a more abstract view of the system. Formal verification,
supported by automated tools, can detect errors in the design that are not easily found using testing
and can be used to establish the correctness of the design.

3.6  Process Algebras

A process algebra focuses on the specification and manipulation of process terms induced by a set
of operators. Most process algebras contain basic operators to build complex processes. A structural
operational semantics is used to formally give each process a semantic representation. This representation
is often expressed in the form of a transition system.

A process algebra can be extended by adding new operators to enhance its expressiveness or to
facilitate the specification of system behaviour. Several process algebras have been standardized by ISO,

212



namely CCS (Calculus of Communicating Systems)[29], CSP (Communicating Sequential Processes)[15],
and LOTOS [5] provide excellent frameworks for describing communicating concurrent systems, and they
are well-equipped for studying their behavioural properties. Process algebras like LOTOS have been the
subject of work aiming to enrich them with temporal and mobility information, such as D-LOTOS [33],
DD-LOTOS[24], and Mobile DD-LOTOS [27].

Our work falls within the framework of specifying organizational multi-agent systems, which are
dynamic and distributed systems involving the concepts of locality and mobility of agents from one site
to another. In our approach, we utilized a distributed communicating language, DD-LOTOS, which
allows for specifying distributed systems. This specification is operationally translated into the semantic
model C-DATA [28] for potential formal verification. DD-LOTOS is defined on another semantic model
known as true concurrency instead of the classical interleaving semantics. It incorporates both temporal
constraints and action durations. The following section will provide an insight into DD-LOTOS language.

3.7 Distributed D-LOTOS Language

DD-LOTOS (Distributed Durational Language Of Temporal Ordering Specification) [24] is a formal
language based on true concurrency semantics called maximality semantics [25][26]. DD-LOTOS is
a programming language that supports real-time distributed systems. It comes with operators like
restriction, latency, and delay that permit specifying real-time systems. The concept of locality or site is
important in specifying the distributed nature of this language. The DD-LOTOS language uses a specific
syntax depicted in Table 1.

Table 1: Syntax of DD-LOTOS

E ::= Behaviours
stop | exit{d} | AE | X[L] |
gQt[SP|;E | iQt{d};E | hideLinE |
EJE | E[[L]|E| EX>E | E[>E |

alw{d};E Emission

alx; B Reception

go(l,E){d} Migration

create(l,E) Creation of locality
S ::= Systems

¢ | SIS [ IUE)

4 Proposed Aproach

In our previous work [32], we introduced a transformation approach that generates DD-LOTOS specifi-
cations from the AGR model. The fundamental idea is to translate each concept in the AGR model into
its equivalent in the DD-LOTOS language.

The AGR model defines the system through three primary concepts: Agent, Group, and Role. In
contrast, the DD-LOTOS language specifies the system using a set of processes. Consequently, in our
approach, we assumed that the system’s behaviour is represented as a collection of interacting agents,
where each agent describes the behaviour of an object in the system. Subsequently, all agents are
translated into a set of processes in the DD-LOTOS language.

Our proposed approach comprises three steps. Initially, all agents are transformed into DD-LOTOS
processes. The resulting processes from this step constitute the reserved section for process declarations
in the specification of DD-LOTOS . Secondly, groups in the AGR model are transmitted into localities
in the DD-LOTOS. A locality serves as an environment that contains a set of processes. In the final
step, we established the global specification with its behaviour.

In the final stage, we verified the DD-LOTOS specification generated using the DD-LOTOS tool. In
the following section, we will briefly explain the automation of our proposed approach using the Xpand
tool. In this paper, our main aim is to illustrate our approach through a detailed example.

The Xpand Code Generation Language Several code generation languages based on the M2T
approach exist, such as Xpand [22], which is based on the Java language. In this document, we have
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chosen the Xpand language, a template-based language, to generate DD-LOTOS specifications from
organizational models. Xpand is a language specialized in code generation from EMF models. To create
an Xpand project, we need an EMF model, a check model with the extension ’.chk’ to define some
constraints, and three essential packages containing files of various extensions.

5 An Automatic Approach For Transforming The AGR Model
Into DD-LOTOS Code

The objective we aim to achieve is the automation of the transformation of the AGR model to DD-
LOTOS using the Model-Driven Engineering (MDE) approach. The principle of the MDE approach
is "everything is a model,” allowing us to reuse models of formalisms called meta-models, which are
adaptable to all platforms. It also enables the manipulation of models through transformations, including
Model-to-Model (M2M) and Model-to-Text (M2T) transformations. Transforming a model into text is a
specific type of transformation defined by the OMG (Object Management Group) within a model-driven
development framework. It follows certain steps to describe the process of transforming a model into
text. In this section, we will propose a transformation process using the Xpand tool to generate a formal
model from the AGR model.

The approach we have proposed consists of two steps, as illustrated in Figure 4. The first step involves
defining a meta-model for the AGR model, and then we submitted the AGR model, as an XMI model
to a transformation model to text (M2T), which produces a textual DD-LOTOS specification. For this
transformation, we have used predefined templates provided by the Xpand transformation language.
After having implemented the AGR meta-model, we will generate the DDLOTOS specifications by using

EMF

{

AGR
meta-model

* create

AGR model
XMI model

# transform

Templatg
Xpand verified pro perties

!

—
=
—] N

Modekchecker UPPAAL counterexamole

M2T

DD-LOTOS specification

Figure 4: Proposed transformation approach

the Xpand tool in the following step.

6 Case Study

Description To validate the applicability of our approach, we demonstrate our transformation of
multi-agent system designed by the AGR model into a DD-LOTOS specification through a case study of
Supply Chain Management (SCM)[18]. The process of supply chain management involves modelling the
production in companies. This application does several tasks includes receiving a command, producing
this command, generating plans of production, changing the plan if certain constraints are not met,
negotiating the delivery time and the price, finally, producing products and delivering it. In the supply
chain management process, there are three types of actors (Figure 5). The clients place, revise, and
delete demands, members of the company, and other companies that are providers of raw materials.

To model and formalize the supply chain management system, we have described it using the AGR
model concepts (agents, groups, and roles) for developing the multi-agent system. This organization in-
cludes two groups. The first group comprises Client agents who create, changes, or delete orders. Client
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agents cooperates with Order-Acquisition agent that accepts the demands from clients and negotiates
the delay and the price with the Logistics agent. The supervisor of this group is called Logistics agent. It
manages the orders of customers with the Order Acquisition agent. Once an order is accepted, Logistics
agent requests the Scheduler agent to generate a plan for that specific command. The aforementioned
plan is subsequently forwarded to the Dispatcher, Resource, Transporter agents. Another group consists
of Provider, Transporter, Resource, and Dispatcher agents. Additionally, agent Scheduler is the repre-
sentative agent of this group. It coordinates interactions between the agents in two groups as depicted
in Figure 6.
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Figure 6: MAS structure of the supply chain management application

The DD-LOTOS Specification Generated From the AGR Model Using Xpand Tool The
XMI AGR model, created by EMF tools that which is conform to the AGR meta-model is translated by
a Model to Text transformation with Xpand to a DD-LOTOS specification as depicted in Table 2.

7 Conclusion And Future Work

Proposed methods for describing organizational multi-agent systems provide only informal descriptions.
Our paper presents a formalization of the organizational model using the DD-LOTOS Formal Language.
More exactly, a familiar organizational model is specified, which is the AGR model. We have chosen the
DD-LOTOS language because it is characterized by formal semantics and defined on a model of true
concurrency semantics. This formalization allows us the validation of organization-centred multi-agent
systems.

Therefore, an M2T transformation approach is involved to specify formally the AGR model. The
approach presents the Agent-Group-Role model in clear and formal terms. Additionally, the specification
decomposes the model into reusable concepts for distinct applications. Using formal notations to specify
the AGR model enables the creation of accurate organizational descriptions. In addition, our approach
provides improved assistance for their validation and verification process.Furthermore, following the
process described in this paper, we plan to specify other organizational multi-agent models.

Thus, we are creating a library of multi-agent models that can be reused for various purposes. Supply
chain management process was examined to describe each concept of the AGR model in a formal way,
and a case study was given to emphasize all formalization steps.

In our future work, we plan to focus on formalizing one of the AGR extensions, such as the AGRE,
AGRMF, AGRS models, etc.
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Table 2: The DD-LOTOS specification of a system designed by the AGR model
Specification supply chain management|order, accepted-order, request, plan,
raw-material]:=
Behaviour

Groupl(E) | Group2(P)
Where
Process E[order, accepted-order |:=
Agent Client[order, accepted-order]|| Agent order Acquisition[order,
accepted-order] || Agent logistics [order, accepted-order]
Where
Process Agent Client[order, accepted-order|:=
order ! command ; exit
EndProc
Process Agent order Acquisition|[order,accepted-order]:=
accepted-order ? x : Message ; exit
EndProc
EndProc
Process P[request, plan, raw-material]:=
Agent scheduler[request, plan] || (Agent transporter [request, plan] |||
Agent dispatcher [request, plan] ||| Agent resource[request, plan] | [raw-material] |
Agent provider [raw-material] )
Where
Process Agent scheduler[request, plan|:=
request ?x : Message
plan! Distribute ; exit
EndProc
Process Agent transporter [request, plan]:=
plan?x : Message
sexit
EndProc
Process Agent dispatcher [request, plan]:=
plan?x : Message
sexit
EndProc
Process Agent resource[request, plan]:=
plan?x : Message
sexit
EndProc
Process Agent provider [raw-material]:=
plan?x : Message
raw-material | materials ;exit
EndProc
EndProc
EndSpec
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Abstract

Heart sound classification systems often rely on analyzing a single heartbeat to classify phonocar-
diogram (PCGQG) signals. This study introduces a novel approach for classifying multi-heartbeat PCG
signals as normal or abnormal, leveraging Wavelet Cepstral Coefficients (WCC) extracted from the
Discrete Wavelet Transform (DWT). A Hidden Markov Model (HMM) classifier, associated with a
Gaussian Mixture Model (GMM), is bases this system on the modeling of each class. The aim of this
work is to develop an effective system for classification of multi-heartbeat PCG signals. The pro-
posed system was evaluated on a subset of the PASCAL heart sounds classification challenge, using
the Classification Rate (Acc_ HTK) as the primary performance metric. The optimal configuration
was obtained with an HMM model comprising 8 states, each associated with 3 Gaussians. A 20 ms
analysis window was used. The WCC descriptor, computed using the db7 wavelet with a decom-
position level of 6, further improved performance, achieving a classification rate of 97.73 %. These
results highlight the effectiveness of WCC descriptors in PCG signal classification and demonstrate
the potential of HMM-based multi-heartbeat classification for improved heart sound analysis.

Keywords: Multi-heartbeat PCG signals, Feature extraction, Wavelet Cepstral Coefficients,
Hidden Markov Model, Classification.

1 Introduction

Auscultation is the process of listening to heart sounds using a stethoscope, and when recorded, it
produces a phonocardiogram (PCG). This technique is crucial for diagnosing cardiovascular diseases
(CVDs), which are among the leading causes of mortality worldwide [1].PCG analysis provides valuable
insights into the location and morphology of heart sounds, aiding in early detection and diagnosis. In a
healthy person, two primary sounds ”lub ... dub...” are heard during each cardiac cycle, corresponding to
the first heart sound (S1) and the second heart sound (S2), respectively. It is evident that a Lub sound
always appears between two Dub sounds, and vice versa. Additionally, the amplitude and duration of
S1 are greater than those of S2. These characteristics, including the positioning and structure of heart
sounds, provide valuable information and are therefore utilized for heart sound (beat) classification [2].
Doctors can detect additional or abnormal heart sounds by identifying irregular rhythms such as ”lub-
lub... dub” or "lub... dub-dub” through auscultation [3].

The classification phase usually consists of three fundamental steps: preprocessing, feature extraction
and decision-making for classification. First, preprocessing is a crucial step in classification that involves
preparing raw data for machine learning models. It involves noise removal using filtering techniques,
segmentation to detect S1 and S2 sounds, and normalization for consistency. Secondly, features extraction
is an essential step in which the classification system is built; it transforms each heartbeat sound signal
into a sequence of vectors. Among them are discrete wavelet transform (DWT) coefficients, introduced
by Mei et al. [4]. Kuiet al. [5] combined MFSC to enhance heart sound classification, while Li et al. [6]
used Short-Time Fourier Transform (STFT) features. Tschannen et al. [7] employed wavelet analysis for
feature extraction. Meanwhile, Li F. et al. [8] extracted 497 time-series features to be used as inputs for
convolutional neural network (CNN). Additionally, Er [9] proposed utilizing local binary pattern (LBP)
and local ternary pattern (LTP) features as inputs for neural networks. Wu et al. [10], which focuses on
applying an ensemble (CNN) model combined with a Savitzky—-Golay filter for phonocardiogram (PCG)
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signal classification. Wavelet cepstral coefficients proposed by [11], Ajit and Swanirbhar [12] explored
the use of power spectral density (PSD) for feature extraction in heart sound classification. Zheng et al.
[13] employed entropy-based features to analyze phonocardiogram (PCG) signals, utilizing entropy as a
measure of signal complexity and irregularity. Touahria et al, [14] which investigates the classification
of heart sounds using energy-based features.

The final stage involves classification, where an appropriate classifier is selected to make accurate
decisions based on the extracted features. In [15] sound classification, neural networks (NN) are com-
monly used. Milani et al. [16] deep learning techniques for this task, but challenges persist due to the
lack of a comprehensive, publicly available heart sound dataset. To address this, Li et al. [17] proposed
a novel approach that incorporates enhanced mel-frequency cepstral coefficient (MFCC) features and
deep residual learning for improved classification performance. In many studies, Hidden Markov Models
(HMMs) have been employed for PCG modeling and analysis. One such study was conducted by [18]
proposed to combine HMM with MFCCs, achieving over 95% sensitivity and specificity but lacked a
separate test set. Chauhan et al. [19] refined the approach, reporting 99.21% accuracy on 1381 heart
cycles, though their method risked overfitting. Saracoglu et al. [20] applied HMM to frequency spectra,
optimizing parameters and achieving 97.5% accuracy on a 60-recording test set. Touahria et al. [21]
proposed to combine HMM with logarithmic wavelet energy (LWE), achieving an impressive classifica-
tion rate of 93.68%. Touahria et al. [22] using wavelet transform techniques to extract features from
phonocardiogram (PCGQG) signals for classification using Hidden Markov Models (HMMs) They reported
an accuracy of 92.74% in the discrimination between abnormal and normal heartbeats.

This study introduces a novel approach for classifying multi-heartbeat PCG signals as normal or
abnormal, leveraging Wavelet Cepstral Coefficients (WCC) extracted from the Discrete Wavelet Trans-
form (DWT). By utilizing a Hidden Markov Model (HMM) classifier combined with a Gaussian Mixture
Model (GMM), this method aims to improve classification rate.

The organization of the structure of this study is as follows. Section 2 will show the suggested
approaches for multi- heartbeat PCG signals classification. The experiment and its findings are presented
in Section 3. Section 4 concludes the paper.

2 Classification of Multi-Heartbeat PCG Signals

2.1 Database

To test our methods, we utilized the PASCAL Classifying Heart Sounds Challenge database [23]. This
database includes two datasets:

e Dataset A: Collected from the general public using the iStethoscope Pro iPhone app.
e Dataset B: Obtained from clinical trials in hospitals using the digital stethoscope DigiScope.

To evaluate this work, only 420 signals with different cardiac cycles including 196 pathological cardiac
cycles were used. The extraction and recording process was performed using the PRAAT software [24],
and each cycle was resampled to 16 kHz. The files were then split into two sub-databases: one for
the training phase, consisting of 70% of the heart sound signals, and the other for the testing phase,
comprising the remaining 30%. In addition, each sound file was paired with a labeling file that includes a
transcription of the heart sound class. Each labeling file has the same name as the corresponding sound
file but with a (with a .1lab extension. These transcription files are used during the class modeling and
system evaluation phases.

2.2 Feature Extraction Method

Figure 1 illustrates the block diagram of the proposed feature extraction method.

As shown in this figure, this method incorporates three types of features: DWE (Discrete Wavelet
Energy) is based on wavelet transform decomposition, where the signal is divided into multiple frequency
sub-bands, and the energy of the wavelet coefficients at different levels is computed. which is evaluated
as:

1. Discrete Wavelet Energy (DWE): Based on the wavelet transform decomposition, where the
signal is divided into multiple frequency sub-bands and the energy of the wavelet coefficients at
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Figure 1: Block diagram illustrating the calculation of the WCCs, LWEs, and DWEs features extraction
[22].

different levels is computed.

N;—1
DWE[d;] = Y |d;[n]|* for j=1,....p (1)
n=0
Np—1
DWE[a,] = > ay[n]|” (2)
n=0

2. Log Wavelet Energy (LWE): Applies a logarithmic transformation to the DWE values.

Nj—1
LWE[d;] = log Z |d;[n]]? for j=1,...,p (3)
n=0
Np—1
LWE[ay] =log [ > lay[n])” (4)
n=0

3. Wavelet Cepstral Coefficients (WCCs): Obtained by applying the inverse discrete cosine
transform (DCT) on the logarithmic energy values.

2.3 Hidden Markov-based Classification System

Generally, several classification methods have been proposed for PCG classification systems to enhance
performance, either by reducing complexity or improving classification rate. In [22], the authors proposed
a method for classifying heartbeat sounds into normal and abnormal classes. In this study, we propose
the implementation of a classification system of multi-heartbeat PCG signal based on Hidden Markov
Models (HMMs) [18], where each class (normal and abnormal) is modeled using an HMM [21]. This
system consists of a training phase and a testing phase, both of which require an acoustic analysis
step to extract relevant parameters for classification. The following figure illustrates the diagram of the
classification system.

In the training phase, each class namely, normal and abnormal heart sounds is modeled using a
dedicated Hidden Markov Model (HMM) comprising N states. These states are designed to capture the
temporal dynamics of the multi-heartbeat PCG signal. To enhance the modeling capability of each state,
we associate it with a Gaussian Mixture Model (GMM), allowing the emission probabilities to flexibly
represent the underlying statistical distribution of the extracted features. The model parameter including
state transition probabilities, mixture weights, mean vectors, and covariance matrice are iteratively re-
estimated using the Baum-Welch algorithm, which performs Expectation-Maximization £M to maximize
the likelihood of the observed training data. This procedure is implemented using the HErest tool from
the Hidden Markov Model Toolkit (HTK) [25], which provides robust facilities for training HMMs on
time-series data.

In the testing phase, a new PCG signal undergoes the same preprocessing and feature extraction steps
as in the training phase, resulting in a sequence of observation vectors. These vectors are then evaluated
against the previously trained HMMs. The classification decision is made by computing the log-likelihood
of the observation sequence under each class-specific HMM. The Viterbi algorithm is employed to find the
most probable sequence of hidden states that best explains the observed data. The signal is classified into
the class whose HMM yields the highest likelihood. This decoding and classification process is performed
using the HVite command from the HTK toolkit [25], which supports efficient implementation of the
Viterbi decoding for continuous HMMs.

Figure 2 shows the diagram of the proposed automatic classification system.
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Figure 2: An automatic classification system of multi- heartbeat PCG signal based on HMM models

2.4 Performance Evaluation

The performance of the system is evaluated using the classification rate (Accyry) defined as:

H
ACCHTK = N X 100, (5)

Where: - H is the number of correctly recognized signals - N is the total number of signals in the reference
transcription [25].

3 Experimental Results

3.1 Experimental

The following section presents the experimental results and is divided into two parts. The first part
compares the performance of the newly selected features with other feature sets. The second part
discusses an experiment aimed at identifying the optimal mother wavelet and decomposition level for the
best previously determined descriptor. The system is implemented utilizing the HTK library [25] with
its classification performance evaluated based on the classification rate((Accyri)

3.2 Comparative Study Between Different Features

Table 2 shows the best classification results achieved with the optimal number of HMM states and
Gaussians.

The feature vector was generated using sliding Hamming windows of 20 ms with a 50% overlap [22].
MFCC (39 features) achieved an Acc_ HTK of 89.77% using 2 Gaussians and 8 states. MFCC, a widely
used method with 39 features, achieved the lowest accuracy (89.77%) with 2 Gaussians and 8 states. In
contrast, DWE, LWE, and WCC, each with only 8 features, utilized 6 Gaussians, leading to improved
recognition accuracy. DWE and LWE performed better than MFCC, achieving 93.18% and 90.91%
accuracy, respectively. Notably, WCC outperformed all other methods with an accuracy of 97.73%,
indicating its superior ability to extract discriminative features for classification. Despite using fewer
features, WCC proved to be the most effective.

3.3 Optimal LWE Parameterization
3.4 Window Duration

Table ?7? presents the Acc_ HTK variations corresponding to different window duration values. In this
experiment, the classification system states were analyzed using db2 wavelets at level 7 [22]. The results
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Table 1: Comparison of classification rate (Acc. HTK %) for different feature extraction descriptors
using Daubechies (db2) at level 7 with the optimal HMM configuration [20].

Feature MFCC (39) DWE (8) LWE (8) WCC (8)
HMM States 8 8 10 8
Gaussians 2 6 6 6
Accuracy (%) 89.77 93.18 90.91 97.73

indicate that the highest accuracy (Acc_HTK) in each column is achieved when the window size is set
to 20 ms, with a peak accuracy of 97.73%. Consequently, a window duration of 20 ms is the optimal
choice for this classification task.

Table 2: Classification rate (Acc. HTK %) for different combinations of the hamming window sizes
Wind. size 60ms 50ms 40ms 30ms 20ms
Accparr (%) 9091 9432 93.18 93.18 97.73

3.5 Wavelet Family and Decomposition Depth

The influence of various wavelet families and decomposition levels on accuracy was examined. Table 77
summarizes the performance of different Daubechies orders and decomposition levels. (Note: The table
below is a simplified representation based on the provided data.)

This section analyzes the smoothness and impact of various wavelet families on AccyTk accuracy,
aiming to identify the optimal mother wavelet and its most effective decomposition level. The study
investigates three wavelet families: Daubechies (Db1-Db8), Coiflets (Coif1-Coif5), and Symlets (Sym1-
Syms8). To ensure robust evaluation, the classification system employs the optimal descriptor identified in
previous research, which utilizes a ten-state Hidden Markov Model (HMM) with three Gaussian mixtures.

As shown in Table 4, the highest accuracy of 97.73% was achieved using the Daubechies wavelet of
order 2 with a 7-level decomposition, demonstrating its superior performance in this classification task.

Table ?? presents the detailed Accyrk results for the best-performing Daubechies wavelet family
across various decomposition levels and wavelet orders. The results highlight a considerable range in
Accyrk values—from a minimum of 84.09% to a peak of 97.73%—emphasizing the importance of select-
ing optimal wavelet parameters.

Table 3: Comparison of Acc. HTK (%) of WCC for different Daubechies orders and decomposition levels.
1 2 3 4 5 6 7 8

dbl 9432 9432 9091 93.18 86.36 92.05 90.91 90.91

db2 86.36 86.36 86.36 94.32 95.45 93.18 97.73 94.32

db3 86.36 87.50 89.77 96.59 88.64 85.23 88.64

db4 86.36 84.09 93.18 90.91 93.18 92.05 87.50

db5 85.23 86.36 93.18 94.32 94.32 90.91

db6 86.36 87.50 93.18 92.05 93.18 96.59

db7 93.18 85.23 87.50 94.32 93.18 94.32

db8 92.05 90.91 87.50 85.23 95.45 94.32

Additionally, results were obtained using the Coiflets and Symlets wavelet families following the same
experimental protocol. Within the Symlet family, order 1 at level 7 achieved the best performance, with
a Acc_ HTK of 90.91%. Similarly, within the Coiflets family, order 5 at level 5 demonstrated the highest
performance, achieving a Acc. HTK of 94.32%. The results, presented in Table 4, show that the highest
classification rate (Acc_ HTK) of 97.73% was achieved using the Daubechies wavelet with order 2 and a
decomposition level of 7.

In conclusion, based on the conducted experiments, the WCC descriptors achieved the highest clas-
sification rates when derived using Daubechies order 2 with level 7 for Daubechies
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Table 4: Comparative results between different kinds of wavelet families. The table shows the Acc_ HTK
values for the optimal decomposition level as well as the optimal order for each wavelet family.

Wavelet Family Level Order Acc_HTK (%)

Daubechies 7 2 97.73
Symlet 7 1 90.91
Coiflets 5 5 94.32

4 Discussion and Conclusions

The experimental results indicate that the choice of wavelet family and decomposition level significantly
impacts classification rate. The Daubechies wavelet of order 2 at level 7 demonstrated the highest
Acc_HTK, confirming its suitability for multi-heartbeat PCG signal classification. Additionally, the
window duration experiment showed that a 20ms Hamming window provides optimal performance. These
findings emphasize the importance of feature extraction techniques in improving classification rate. This
study proposes a novel approach for classifying multi-heartbeat PCG signals using Wavelet Cepstral
Coefficients (WCC) and a Hidden Markov Model (HMM). The system achieved a high classification
rate of 97.73% on a subset of the PASCAL heart sounds classification challenge, demonstrating its
effectiveness. The results highlight that the optimal configuration involves using the Daubechies order
2 wavelet at a decomposition level of 7 with WCC descriptors. Future work could explore alternative
machine learning models to further improve classification performance. Additionally, testing on larger
and more diverse datasets could enhance the generalizability of the proposed method.
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Abstract

In recent years, researchers have focused on solving real-world optimization problems that im-
pact logistics and transportation. Among these, the Vehicle Routing Problem (VRP) and its various
variants have gained significant attention due to their wide ranging applications. One of the most
widely used techniques for solving VRP is the Genetic Algorithm (GA). As part of the Evolutionary
Intelligence approaches, GA leverages its operators to learn how to adapt its prospecting of the prob-
lem search space, in order to reach efficiently good solutions. This paper provides an overview of GA
operators tailored to solve VRP, and evaluates different operator configurations for the Capacitated
VRP by using a benchmark set taken from the literature, to trial their learning performance.

Keywords: Evolutionary Intelligence, Combinatorial Optimization, Vehicle Routing Problem,
Genetic Algorithm, Genetic operators, Selection, Crossover, Mutation.

1 Introduction

Logistics, transportation, and supply chain management have been among the key areas of research in
recent years. Two fundamental optimization challenges in these domains are the Traveling Salesman
Problem (TSP) and the Vehicle Routing Problem.

The TSP is a well-known combinatorial optimization problem where a salesman must visit a set of
customers exactly once and return to the starting point while minimizing travel distance [1]. Over time,
this concept has been extended to incorporate multiple vehicles and additional constraints beyond just
minimizing the overall travel distance. This extension is known as the Vehicle Routing Problem (VRP)
(Figurel).

depot

ISP VRP

Figure 1: TSP vs. VRP

VRP generalizes the TSP by determining a set of vehicle routes, each assigned to serve a group of
customers with known demands. The objective is to minimize the total travel distance while satistying
problem-specific constraints [2]. Due to its broad real-world applications, researchers have continuously
enhanced the classical VRP model by introducing additional constraints and various optimization criteria
to make it more practical.
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Different VRP constraints have led to the development of multiple VRP variants such as (Figure 2):

e Capacitated VRP (CVRP): Involves a fleet of vehicles with limited capacity, where the total quan-
tity delivered on each route must not exceed the vehicle’s capacity [3, 4].

e Heterogeneous VRP (HVRP): If all vehicles have the same characteristics (e.g., volume, speed,
capacity), the problem is considered homogeneous [5]; otherwise, it is heterogeneous [6].

e VRP with Time Windows (VRPTW): Considers customer availability, ensuring that deliveries are
made within a predefined time window [3, 7].

e Periodic VRP (PVRP): Deals with customers who require deliveries on a recurring schedule over
a specific planning horizon [8].

e Multi-Depot VRP (MDVRP): Incorporates multiple distribution centers from which vehicles are
dispatched to serve customers [9].

e Open VRP (OVRP): In this variant, vehicles are not required to return to the distribution center
after completing their routes[10].

e Dynamic VRP (DVRP): Unlike static VRP, this version assumes that customer requests can change
in real time during the delivery process. New requests may be added, existing ones may be canceled,
or delivery conditions may change, requiring continuous route re-optimization [10, 11].

DVRP

MDVRP PVRP

VRP
HVRP w VRPTW

e

CVRP OVRP

Figure 2: Some VRP variations

The objective function in VRP varies depending on the problem context. It may be defined by using
one of the following criteria or a combination of them:

e minimize total distance,

e minimize travel cost,

e minimize penalties,

e maximize customer satisfaction,

e maximize service quality.

These criteria will be revisited with full details in section 2.3

Over the years, various solution approaches have been proposed to tackle the complexity of different
VRP variants. These approaches are broadly classified into exact and approximate methods. Since VRP
is NP-hard, and thus, finding an optimal solution for large instances is computationally expensive, exact
methods become impractical for large-scale problems. Instead, approximate methods (heuristics and
meta-heuristics) are the preferred choice. Among them, Genetic Algorithms (GA) have gained popularity
due to their ability to explore large solution spaces efficiently and produce high-quality solutions.
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In VRP applications, the performance of Genetic Algorithms can be boosted or hindered by the
operators to be used, which directly influence solution quality. Indeed, GA operators give the GA its
ability to learn from generation to generation how to correct its trajectory towards promising areas of
the solutions’ search space. This paper surveys the different GA operators applied to solve VRP.

The remainder of this paper is organized as follows: Section 2 provides an overview of the Genetic
Algorithm. Section 3 presents different GA operators applied to VRP, Sections 4 and 5 describe the
experimental methodology and the results and discussion, respectively. Finally, Section 4 concludes the
paper with insights and future research directions.

2 Genetic Algorithm learning mechanism

Genetic Algorithms are a class of metaheuristic optimization techniques inspired by the principles of
natural selection and evolution, as described by Charles Darwin [12, 13, 14]. GAs, even in their basic
form, embody key concepts of Artificial Intelligence as they can learn, adapt and search for good solutions
to problems difficult to solve by humans. GAs are particularly effective in solving complex optimization
problems by intelligently exploring the search space and finding optimal or near-optimal solutions within
a reasonable time frame. This makes GAs highly useful for NP-hard problems, such as the Vehicle
Routing Problem and its variants.

GAs work by maintaining a population of candidate solutions that can learn across multiple gener-
ations through the application of genetic operators, including selection, crossover, and mutation. These
operations guide the search towards high-quality solutions.

2.1 Key concepts in GAs
To understand how GAs function, the following fundamental concepts should be introduced [15, 16]:
e Population: A set of chromosomes, each representing a potential solution to the problem.

e Chromosome: An encoded representation of a solution in a specific format (e.g., sequence of cus-
tomer visits in VRP).

e Gene: A component of a chromosome that represents a decision variable (e.g., a customer or a
route segment).

e Allele: A specific value that a gene can take.
e Offspring: New chromosomes produced through crossover and mutation operations.
e Objective function: A function that evaluates the fitness (quality) of each solution, based on the

problem’s optimization goal (e.g., minimizing total travel cost).

2.2 Genetic Algorithm process
The standard process of a GA follows these steps (Figure 3) [17]:

1. Initialization: Generate an initial population of candidate solutions, either randomly or using
problem-specific heuristics.

2. Evaluation: Compute the fitness of each chromosome in the population using the objective function.

3. Selection: Choose parent solutions from the population based on their fitness values, ensuring that
better solutions have a higher chance of being selected.

4. Reproduction (Crossover & Mutation):

e Crossover: Combine genetic material from two parent solutions to generate offspring.

e Mutation: Introduce small random modifications to maintain diversity in the population.

5. Replacement: Replace some or all of the existing population with newly generated offspring, form-
ing the next generation.

229



6. Termination condition: Check if a predefined stopping criterion is met (e.g., reaching a maximum
number of generations, convergence of solutions, or stability in fitness values). If the criterion is
met, return the best chromosome as the final solution; otherwise, repeat the process from step 2.

Initial population

Ewvaluation

E 3

hntation

Mawr population
Mo

Figure 3: Genetic algorithm flowchart

2.3 Optimization Criteria in VRP

The Vehicle Routing Problem encompasses a variety of optimization objectives, which vary depending
on the problem variant and practical application domain. Traditionally, the primary objective in VRP
is to minimize the total distance travelled or to optimize the number of routes (vehicles). However,
many real-world scenarios introduce additional or alternative goals, such as minimizing total travel time,
reducing fuel consumption, balancing the workload among vehicles, or maximizing customer satisfaction
by respecting service time windows and delivery preferences.

When applying Genetic Algorithms to solve VRP, the fitness function is a critical component that
encodes these objectives into a quantifiable criterion. Depending on the VRP variant, the fitness function
can be single-objective (minimizing total cost) or multi-objective (minimizing cost while maximizing
service quality), and often involves penalization terms for constraint violations such as time windows.
For instance, VRP with Time Window and Capacitated VRP, infeasible solutions may be penalized based
on the degree of violation. Furthermore, the GA must be carefully tailored to preserve feasibility during
the search process while maintaining diversity in the population. By clearly defining and incorporating
these objectives into the evolution process and evaluation mechanisms, GA can effectively explore the
solution space and adapt to different VRP scenarios.
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2.4 Learning mechanisms in Genetic Algorithms

Since Genetic Algorithms are inspired by biological evolution they are designed to adapt their behaviour
over time, a property often referred to as learning.

This feature is further stressed in Adaptive GAs, whre the probabilities of applying genetic operators
(selection, crossover, mutation) are dynamically adjusted based on their historical performance across
generations. This process enables the algorithm to emphasize the most successful operators, improving
convergence speed and maintaining population diversity [18].

Self-adaptive GAs go a step further by encoding control parameters directly into the chromosomes,
allowing these parameters to evolve alongside the solutions themselves. This mechanism enables the al-
gorithm to autonomously learn optimal operator settings and adjust to the characteristics of the problem
over time [19]. For example, in dynamic VRPs, such approaches automatically increase mutation rates
when new customer requests arrive, enabling faster adaptation to changing conditions.

Recently, hybrid approaches have combined self-adaptation with reinforcement learning or deep learn-
ing to further enhance the algorithm’s ability to navigate complex and dynamic search spaces. These
learning-driven strategies are particularly valuable in solving real-world optimization problems such as
the Vehicle Routing Problem, where constraints and environmental conditions can vary significantly.
Such mechanisms highlight the potential of learning-enabled GAs to intelligently and autonomously ex-
plore the solution space, aligning with the goal of achieving robust and efficient optimization in logistics
and transportation.

Different Genetic Algorithm operators are designed for specific problem domains. The next section
surveys the GA operators commonly applied to VRP.

3 GA operators for VRP

The effectiveness of GAs in solving the Vehicle Routing Problem largely depends on the choice and im-
plementation of the genetic operators. These operators play a crucial role in guiding the search process,
maintaining population diversity, and ensuring convergence toward high quality solutions. While the fun-
damental GA operators (selection, crossover, and mutation) are common across different optimization
problems, their adaptation to VRP requires specialized mechanisms to handle route based represen-
tations, feasibility constraints, and solution quality. Various modifications of selection, crossover, and
mutation have been proposed in the literature to enhance GA performance in VRP. After presenting the
initial steps of the GA to solve VRP, the most widely used operators are described in what follows.

3.1 Chromosome representation

The encoding method directly impacts GA’s ability to find optimal or near-optimal solutions efficiently.
The chromosome representation in GA is crucial for determining good solutions to VRP. However, dis-
cussing all the encoding approaches is beyond the scope of this work. Instead, we present the presentation
that allows to understand the described operators.

Among the various encoding techniques proposed in the literature, path representation is the most widely
used for VRP. In this approach[14]:

e Customers are represented by integer identifiers, with each integer corresponding to a specific
customer

e The order of these integers within the chromosome defines the sequence of customer visits

e The Depot Index (typically 0) indicates the start and end points of each route, segmenting the
chromosome into separate routes

e Each route is marked by a depot index, with customers visited in the order specified by the sequence
of integers

This encoding structure provides a direct and clear representation of customer visit sequences and vehicle
routes, as shown in Figure 4a. After constructing the full chromosome, depot indexes can be removed
to improve readability, as demonstrated in Figure 4b.
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Figure 4: VRP chromosome representations

3.2 Selection operators

The selection process in GAs determines which individuals (solutions) are chosen for reproduction. While
no specific selection method is designed exclusively for the Vehicle Routing Problem (VRP) and its
variants, the following widely used selection operators can be effectively applied:

e Roulette wheel selection (RWS): assigns a probability to each chromosome based on its fitness.
A virtual wheel is spun, and the chromosome closest to the stopping point is selected. Since
elements with higher fitness occupy a larger portion of the wheel, they have a greater chance of
being chosen[20].

o Elitism selection (ES): preserves the best solutions by directly transferring them to the next gen-
eration, ensuring that high-quality solutions are not lost during the evolutionary process [14].

e Rank selection (RS): orders chromosomes based on fitness and assigns selection probabilities ac-
cordingly. This method prevents highly fit individuals from dominating the selection process too
early, leading to a more balanced exploration of the solution space [14].

e Tournament selection (TS): involves randomly selecting a subset of chromosomes and conducting
a competition, where the one with the highest fitness is chosen. This method maintains diversity
and prevents premature convergence to local optima [14].

3.3 Crossover operators

The crossover process in genetic algorithms mimics a natural biological phenomenon where genetic ma-
terial is exchanged between parents to create offspring. The most fundamental crossover methods are
one-point crossover and two-point crossover.

In one-point crossover, a random cutting point along the chromosome is selected, and the segments
of the chromosome are exchanged between two parent chromosomes [12]. In two-point crossover, two
cutting points are selected, and the portion between these points is swapped between the parents [13].

While these methods are simple and intuitive, they are often not well-suited for combinatorial op-
timization problems like the Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP).
One of the main issues is that these basic crossover methods can generate duplicate genes or customer
visits within the chromosomes, which is a critical problem in TSP and VRP, where each customer must
be visited exactly once in a valid solution. As a result, offspring created through these methods may
require post-crossover repair to remove duplicates and restore feasibility.

To address these limitations,several advanced and specialized crossover techniques have been devel-
oped. These methods aim to preserve the validity of the solution, ensuring that the offspring generated
do not violate the constraints (such as visiting each customer exactly once) and enhancing the efficiency
of the genetic search process. Some of the key techniques are:

e Order crossover: This recombination technique is designed for permutation-based problems such as
the VRP. It preserves the relative ordering of cities by transferring a contiguous segment from one
parent while filling the remaining positions with elements from the second parent in their original
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sequence, ensuring that no duplicates occur. The process begins with the selection of two cut
points, defining a subsequence to be directly copied into the offspring. The remaining positions are
then filled by sequentially inserting elements from the other parent, starting immediately after the
second cut point and skipping those already present in the offspring (see Figure 5) [20, 21, 22].

Parent 1 Parent 2
[1]2]3[4]5]6[7[8] [3[7]s5]1]6][s[2]4]
v
L [ [3fefs] [ [ | L[ Isfxfe] | | |
Child 1 Child 2
[1[6]3[4]5][8[2]7]| [3[4[s]1]6]7[s[2]

Figure 5: Order crossover

e Cycle crossover: this method used for permutation problems. It works by identifying cycles of
genes between two parent solutions and transferring them to the offspring. The process starts by
copying genes from Parent 1 to the offspring, then follows the positions of corresponding genes in
Parent 2 to complete the cycle. Once a cycle is finished, the remaining genes are copied from the
other parent. This ensures a valid permutation without duplicates, preserving the relative order
of genes from both parents. It’s particularly useful for problems like TSP or VRP. (see Figure 6)
[23, 24, 25].

Parent 1 Parent 2
(1 ]2[3[4]5[6]7[8] (37 ]s5[1]6][8[2]4]
(1] [3f4a4][s5]6] [8] (3] [s[1]e6][s]| [4]
Child 1 Child 2
(1 ]7[3[4]5[6]2]8] [3]2]s5[1]6][8[7]4]

Figure 6: Cycle crossover

e Partially mapped crossover: This method works by selecting a random subsequence from one parent
and copying it into the offspring. The remaining positions in the offspring are filled with genes
from the other parent in the order they appear, while preserving the relative order of the cities
from the first parent. This technique avoids duplicates and preserves the structure of the parent
solutions (see Figure 7) [26, 27].

Parent 1 Parent 2
[1[2]3[4[5[6][7]8] [3[7]s]1[6[8][2]4]
PEE——

L[ [sJrfe] | | | L [ [3[4fs] [ [ |
Child 1 Child 2
[4]2[5[1]6[3[7]S8| [6[7[3[4]5[8][2]1]

Figure 7: Partially mapped crossover

e Order based crossover: This method begins by randomly selecting a set of positions in Parent
1. Next, the genes from Parent 2 are copied into Child 1, excluding the genes located in the
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selected positions of Parent 1. Finally, loop over parent 1 and transfer to child 1 the genes that are
not already transferred to it. This ensures that the offspring maintains a valid permutation and
preserves key structural properties from both parents. (see Figure 8) [28, 29, 30].

Parent 1 Parent 2

Child 1 Child 2

[3[s]7[1]6[8]2]4] [1]3]6[4]s]2]7[8]

Figure 8: Order based crossover

3.4 Mutation operators

Many mutation types are proposed in the literature, such as:

e Exchange (or Swap) mutation: This mutation operator randomly selects two cities in the tour and
exchanges their positions as shown in Figure 9a [31, 23, 32].

e Insertion mutation: The insertion mutation operator randomly chooses a city in the tour, removes
it from this tour, and inserts it in a randomly selected place as shown in Figure 9b [33, 34].

e Inversion mutation: This operator randomly selects a sub-tour, removes it from the tour, then
inserts it in reversed order at a randomly selected position (see Figure 9¢) [33, 35, 34].

(a) Exchange

e
| 1 ] 6 | 3 [ 4 [ 5 [ 2 ] 7] 8]

Selecting 3 to be inserted after 6

(¢) Inversion

|1|z|3y:‘>l<s/l/ﬁl?|8|
[T T2 ¢1 3T +13 73]

Selectsequence (4,56 ) and insert it after 2

Figure 9: Mutation operators
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4 Experimental Methodology

To support the theoretical analysis of genetic algorithm (GA) operators, namely, selection, mutation, and
crossover, this study conducted a set of experiments evaluating various combinations of these operators.
In total, 48 distinct GA configurations are examined. The objective is to assess the influence of these
operators on the algorithms performance in solving the Capacitated Vehicle Routing Problem (CVRP),
using a well-established benchmark set [36].

Our experimental analysis focuses on the A-n32-k5 instance, which is characterized by the following
features:

e 31 customer locations, each associated with a specific demand.

e A homogeneous fleet consisting of 5 vehicles with identical capacity.
e A known optimal total distance of 784 kilometers.

The experimental setup adopted in this study includes:

e Population size: 100 individuals.

e Maximum number of generations: 500.

e Constraint-handling strategy: penalty functions are applied to penalize individuals that violate the
problem’s constraints, including capacity limitations and the number of available vehicles.

5 Results and Discussion

The results in Table 1 demonstrate significant variability in performance across the 48 genetic operator
combinations. Notably, the OBX crossover paired with inversion mutation and elite selection achieved
the lowest distance of 838.42 km, which is close to the benchmarks optimal distance (784 km) by just
6.9%. This configuration also exhibited moderate computation time (4.69 s), suggesting a favourable
balance between solution quality and computational effort. Conversely, configurations using CX crossover
with insertion mutation (1214.52 km) highlight the risks of poor operator synergy, where premature
convergence and limited exploration lead to suboptimal solutions.

Table 2 underscores the superiority of OBX crossover, which achieved both the lowest best-case
distance (838.42 km) and the lowest average (950.11 km). In contrast, CX crossover exhibited the
highest worst-case distance (1214.52 km) and average (1025.71 km), indicating instability in maintaining
solution quality.

Table 2: Distance results for Crossover operators

Crossover operator  Best Worst  Average
PMX 875.50  1183.41 1016.87
0X 897.57  1089.07 984.62
OBX 838.42  1143.70 950.11
CcX 870.60 1214.52  1025.71

Additionally, Table 3 summarizes the performance of each mutation operator across all selection and
crossover combinations. The inversion mutation yielded the most promising results overall, providing
both the lowest best-case distance and the lowest average distance. This demonstrates its advantage in
maintaining solution quality while efficiently exploring the solution space.

Table 3: Performances of Mutation operators

Mutation operator Best Worst Average

Insertion 967.48 1214.52  1059.82
Swap 863.99  1146.60 960.86
Inversion 838.42 1178.33 962.25
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Table 1: Performance evaluation of genetic operator combinations on the CVRP (Instance A-n32-k5)

Genetic Operators Performance Metrics
Crossover Mutation Selection Distance (Km) Time (s) Convergence
PMX Insertion Elite 1005.27 4.58 51
PMX Insertion Tournament 1054.96 2.38 493
PMX Insertion Roulette 1183.41 2.62 379
PMX Insertion Rank 1047.46 4.53 491
PMX Swap Elite 1001.64 5.16 69
PMX Swap Tournament 929.07 2.26 257
PMX Swap Roulette 1146.60 2.56 460
PMX Swap Rank 921.60 5.50 491
PMX Inversion Elite 946.69 3.55 74
PMX Inversion Tournament 875.50 2.42 440
PMX Inversion Roulette 1178.33 2.71 492
PMX Inversion Rank 911.89 5.99 491
OX Insertion Elite 1010.58 3.66 70
OX Insertion Tournament 1014.45 2.50 478
(0).4 Insertion Roulette 1013.40 3.50 437
(0):4 Insertion Rank 976.00 4.77 390
OX Swap Elite 916.75 3.68 100
(0):4 Swap Tournament 1047.53 2.80 481
0OX Swap Roulette 1067.24 3.64 462
OX Swap Rank 897.57 4.52 459
(0):4 Inversion Elite 977.26 3.84 94
OX Inversion Tournament 903.68 3.72 487
OX Inversion Roulette 1089.07 2.73 457
OX Inversion Rank 901.89 4.50 497
OBX Insertion Elite 1143.70 4.52 63
OBX Insertion Tournament 1018.18 2.25 486
OBX Insertion Roulette 996.05 2.42 439
OBX Insertion Rank 1035.97 4.18 393
OBX Swap Elite 917.28 4.51 111
OBX Swap Tournament 863.99 2.20 486
OBX Swap Roulette 918.42 2.38 430
OBX Swap Rank 894.42 4.16 486
OBX Inversion Elite 838.42 4.69 73
OBX Inversion Tournament 872.04 2.29 309
OBX Inversion Roulette 983.75 2.43 401
OBX Inversion Rank 919.11 4.89 417
CX Insertion Elite 1214.52 6.06 40
CX Insertion Tournament 967.48 3.60 323
CX Insertion Roulette 1127.22 4.50 461
CX Insertion Rank 1149.44 5.35 464
CX Swap Elite 1005.40 6.61 39
CX Swap Tournament 899.72 4.13 468
CcX Swap Roulette 1034.52 3.73 483
CX Swap Rank 911.94 7.04 465
CX Inversion Elite 956.47 5.65 81
CX Inversion Tournament 870.60 4.51 490
CX Inversion Roulette 1115.62 3.59 487
CX Inversion Rank 1055.63 5.44 492

Note: All solutions are feasible and utilize all 5 vehicles. Distances reflect total route lengths in kilometers. The
Convergence column indicates the generation at which the best solution was first identified.
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Regarding selection mechanisms, Table 4 illustrates that elitism consistently helped in preserving
high-quality individuals, while tournament selection offered a good balance between exploration and
exploitation. Roulette and rank selection performed moderately, with less consistent results.

Table 4: Summary Statistics for Selection Operators

Selection operator  Best Worst Average

Elite 838.42 1214.52 994.50
Tournament 863.99  1054.96 943.10
Roulette 918.42 1183.41 1071.05
Rank 894.42 1149.44 968.58

The top performing configurations in Table 5 highlight the dominance of OBX crossover and inversion
mutation, which appear in three and four of the five best combinations, respectively. The prevalence
of tournament selection (four entries) alongside elite selection (one entry) further supports its role in
maintaining population diversity. Notably, the winning configuration (OBX + inversion + elite) achieved
a 6.9% deviation from the benchmarks optimal distance, demonstrating the potential of carefully tuned
GAs for near-optimal CVRP solutions.

These results validate the critical role of operator selection in GA performance. The synergy between
OBX crossover, inversion mutation, and tournament/elite selection emerges as a robust strategy for
CVRP optimization.

Table 5: Top 5 Genetic Operator Combinations by Distance

Crossover Mutation Selection Distance
OBX Inversion Elite 838.42
OBX Swap Tournament 863.99
CX Inversion Tournament  870.60
OBX Inversion Tournament 872.04
(0).4 Inversion Tournament 903.68

6 Conclusion

The Vehicle Routing Problem (VRP) is a well-known problem extensively studied in the literature due
to its wide-ranging practical applications. VRP is NP-hard. As a result, approximate methods, such as
Genetic Algorithms (GAs), which are a key component of the Evolutionary Intelligence protfolio, offer a
more viable solution approach for larger-scale problems.

Inspired from the evolution process of natural species, GAs can learn to adapts themselves by leverag-
ing its operators capability to find and maintain good genetic information from generation to generation.
In this paper, we reviewed various GA operators specifically designed for the VRP and its variants.
The empirical evaluation of various operator configurations on the Capacitated VRP using a well-known
benchmark set demonstrated that the combination OBX crossover, inversion mutation, and tournament
selection achieve near-optimal results, deviating by only 6.9% from the benchmarks theoretical optimum.

As a prospective extension of this work, we recommend applying the tested operator configurations
across a broader range of benchmark datasets and VRP variants. Such an extension would facilitate a
comparative analysis aimed at assessing the operators’ robustness and generalization ability with respect
to solution quality. This comparative analysis could provide valuable insights into the learning strength
of each operator for solving VRP variants effectively.
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Abstract

Community detection in social networks is crucial for understanding social dynamics and interac-
tions. In this paper, we propose LFM2ACO, an algorithm designed to detect dynamic communities
by combining the principles of the static Large Families Model (LFM) with those of Ant Colony Opti-
mization (ACO). Inspired by the biological phenomenon of ant colonies, where pheromones guide and
reinforce paths to food sources, we model social relationships as dynamic trails that require constant
renewal. Just as pheromones evaporate over time unless refreshed by ant activity, social connections
weaken without continued interaction. The LFM2ACO algorithm captures this essence, simulating
the strengthening of relationships through repeated communication (e.g., messages, likes, comments)
and their decay in the absence of such interactions. Comprehensive experiments on real-world social
networks, including the Facebook Wall/Links dataset and the Enron email dataset, demonstrate
the robustness and efficacy of LFM2ACO in accurately detecting dynamic communities. This work
not only enhances the understanding of community evolution but also provides a practical, imple-
mented solution, validated through experimentation, offering valuable insights for future research
and development in community detection algorithms.

Keywords: Community detection; LFM; Dynamic communities; Ant Colony Optimization (ACO);
Social networks; Pheromone; Community evolution.

1 Introduction

1.1 Background

Social networks are complex environments modeled by graphs [1]. Analyzing these networks allows the
extraction of hidden characteristics, such as community detection [2].

1.2 Motivation

Community detection has received considerable attention, allowing a macroscopic view of network struc-
ture. Social networks are dynamic, requiring consideration of their evolution. The LFM algorithm [3] is
effective for static communities but doesn’t support dynamic graphs [1].

1.3 Objectives

This study extends the LFM algorithm for dynamic networks using ACO principles. The main objective
is to hybridize LFM and ACO for dynamic community detection. Specifically, we aim to:

e Study and implement the LFM algorithm for static community detection.
e Propose a dynamic extension of LFM based on ACO principles (LFM2ACO).
e Evaluate the performance of LFM2ACO in real-world datasets.

Section 2 provides related work, Section 3 outlines the methodology, Section 4 presents the experimental
setup, Section 5 presents results and analysis, and Section 6 concludes the work.
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2 Related Work

2.1 Overview

Community detection algorithms identify groups of densely connected nodes [4]. Approaches include
graph partitioning [5] and hierarchical clustering [6]. Modularity-based methods, like the Louvain algo-
rithm, optimize the modularity score [9].

2.2 Static vs. Dynamic

Algorithms are classified into static [7] and dynamic approaches [10]. Dynamic algorithms account for
the temporal evolution of networks [8].

2.3 Hybrid Approaches

Hybrid approaches combine different techniques. There is growing interest in combining metaheuristic
algorithms, such as ACO, with traditional algorithms [13, 14]. LFM is effective for static communities
[3]. This work addresses this limitation by combining LFM with ACO principles.

3 Methodology

This section details the hybridization of LFM with ACO for dynamic community detection.

3.1 Large Families Model (LFM) Algorithm

The LFM algorithm [3] identifies communities based on ”large families.” The algorithm operates in three
main steps:

1. Initial Community Detection
2. Out-Node Integration
3. Community Merging

The LFM algorithm uses notations shown in Table 1.

Table 1: Notations used in the LFM approach [3].

Notation Description

A% Set of nodes

E Set of edges of the graph

G=(V, E) | The graph associated with the social network

A Adjacency matrix of G

Ali, j] Boolean value representing the relationship between nodes i and j
MRC Set of maximum connected components

MRC(]) The 1th MRC

The LFM algorithm maximizes the modularity of the resulting community structure but doesn’t
account for the temporal evolution of social networks.

3.2 LFM2ACO: Dynamic Extension of LFM using ACO Principles

To address the limitations of LFM, we propose LFEM2ACO, a dynamic extension of LFM based on ACO
principles. The key idea is to use ACO to model the temporal evolution of relationships.

Figure 1 illustrates the LFM2ACO approach.

The LEM2ACO approach consists of the following steps:

1. Data Preprocessing

2. Pheromone Initialization
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Figure 1: LFM2ACO Approach

3. Ant Colony Optimization
4. Dynamic Community Detection
5. Community Evolution Analysis

Figure 2 shows an example of how the dynamic network can be represented mathematically and as
a 3D matrix.
The pheromone update rule is a crucial component:

Tig(t+1) = (1= p) - 7i5(t) + Do) Arl(t)

where:

*ij(t) is the pheromone value on edge (i, j) at time t * is the pheromone evaporation rate * m is the
number of ants * kij(t) is the amount of pheromone deposited by ant k on edge (i, j) at time t

Table ?? shows the transcription of the LFM model into ACO terminology.

4 Experimental Setup

This section describes the experimental setup used to evaluate the performance of the LFM2ACO ap-
proach.
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Figure 2: LFM2ACO, concept 3D.
Table 2: Transcription ACO of the LFM model.
LFM Model ACO Terminology Description
Social network Set of ants, nests, and food sources | Represents the overall social envi-
ronment
Two employees communicating Two adjacent vertices contacted Represents interaction between in-
dividuals
Week (in our case study) Evaporation of a quantity (Beta) | Represents the decay of social re-
of pheromone lationships over time
Number of days without contact Number of days of absence Represents the duration of inactiv-
ity between individuals

4.1 Dataset Description
We used the Facebook Wall/Links dataset [15, 16] and the Enron Email dataset [17].

4.1.1 Facebook Wall/Links Dataset

The Facebook Wall/Links dataset contains user-to-user links and user posts.

4.1.2 Enron Email Dataset

The Enron Email dataset is a database of emails from the Enron Corporation. We used a subset of the
Enron Email dataset consisting of messages exchanged between employees.
Figures 3 and 4 illustrate the datasets.

4.2 Preprocessing and Data Preparation

The preprocessing and data preparation steps varied depending on the dataset. For the Enron Email
dataset, we performed preprocessing steps to construct a dynamic social network.

4.3 Implementation Environment and Tools

Our work was performed on an INTEL CORE™i5 processor with 4GB of memory and a 64-bit Windows
operating system. We used text files, a MySQL database, Uwamp, and PHP.
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Figure 3: Benchmarks used: Facebook Wall on the left and Facebook links on the right.

Figure 4: ENRON network before any community detection algorithm was applied.

5 Results and Analysis

This section presents and analyzes the results obtained from applying the static LFM algorithm to the
Facebook dataset and the dynamic LEM2ACO algorithm to the Enron dataset.

5.1 Static LFM Results on Facebook Dataset

The static LFM algorithm was applied to the Facebook Wall/Links dataset. Table 3 summarizes the

results.

Figure 5 shows the final community structure obtained for ‘CadjMax‘ = 2.

LLLTLLLLLLLLLTLLLTELELL L0 00 L LLOS0. L0 L0000 L LELELLLET TR LEL L L L L L LT RLLL LR L L LELL LR LL L ELEL LT L LL L,
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Figure 5: Final distribution result comment for cadjmax=2.
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Table 3: Summaries of community distributions of each iteration (CadjMax—) with modularity.

CadjMax | First generation | Latest generation | Number of out nodes | Modularity(Q)

9 40 1 87 5.9799773157978E-17
8 62 1 88 5.9799773157978E-17
7 76 1 89 5.9799773157978E-17
6 102 1 90 5.9799773157978E-17
5 147 2 83 0.17051866319444

4 207 2 83 0.17051866319444

3 283 2 85 0.15957151813272

2 417 3 83 0.15970413773148

5.2 Dynamic LFM2ACO Results on Enron Dataset

The dynamic LEM2ACO algorithm was applied to the Enron Email dataset. The algorithm was executed
iteratively, updating the pheromone matrix.
Figures 6, 7, 8, and 9 illustrate the pheromone update process.
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Figure 7: Result of the pheromone quantity update, week=48 and year 1998

Table 4 summarizes the results obtained for week 48 of 1998.
Figure 10 shows the community structure obtained for ‘CadjMax‘ = 472.

5.3 Comparison

The static LEM algorithm achieved a maximum modularity of 0.17051866319444 on the Facebook
dataset, while the dynamic LEM2ACO algorithm achieved a maximum modularity of 0.53652645659928
on the Enron dataset.
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Figure 9: Result of the pheromone quantity update, week=25 and year 2002.

5.4 Discussion

The results provide insights into the dynamics of social networks. The dynamic LFM2ACO algorithm
captures the community structure in dynamic networks.

6 Conclusion and Future Work

This section summarizes the contributions, discusses limitations, and suggests directions for future re-
search. This paper has explored community detection in social networks. The main contributions include
the following:

e A comprehensive review of existing community detection approaches.

e An in-depth study of the LFM algorithm.

The development of LEM2ACO.

An adaptation of the LFM algorithm to handle weighted networks (that we called WLFM for
"Weighted LFM”).

e Implementation and evaluation of LFM and LEM2ACO on real-world datasets.
This paper has some limitations, like:

e The LFM2ACO algorithm was only evaluated on two datasets.

e The LFM2ACO algorithm does not explicitly handle overlapping communities.
e Scalability to very large networks.

Based on these limitations, future research can be identified like:

246



Table 4: Summaries of community distributions of each CadjMAx- iteration - with the modularity of
the WLFM algorithm.

CadjMax | Nombre de communauties | Modularity (Q)

472 10 0.53652645659928
f=1 = G-\_—» - d
I

Figure 10: Graph result for the best distribution CadjMax=472.

Extend the LEM2ACO algorithm to handle overlapping communities.
Improve the scalability of the LEM2ACO algorithm.
Apply the LEM2ACO approach to directed graphs.

Evaluate the performance of the LFM2ACO algorithm on a wider range of datasets.

Another AI perspective regarding the use of Al to our original LFM algorithm or the one proposed
in this work (LFM2ACO) such as:

Integrating Deep Learning for Predictive Community Dynamics: Leverage temporal
graph neural networks (TGNNs) or transformer-based architectures to model the evolution of
social interactions, enabling the prediction of future community structures (e.g., births, mergers,
or splits) based on historical trajectory patterns and individual behavior embeddings.

Behavior-Aware Forecasting with Reinforcement Learning: Develop hybrid models com-
bining LFM2ACO with deep reinforcement learning (DRL) to simulate adaptive agent behaviors,
where Al-driven individuals dynamically switch communities based on learned reward mechanisms
reflecting social preferences.

LLM-Enhanced Relationship Semantics: Utilize large language models (LLMs) to analyze
textual interaction data (e.g., social media content), extracting semantic signals to enrich edge
weighting in WLFM and predict community formation triggers from latent topic shifts.

Neural Attention for Overlap Resolution: Implement multi-head attention mechanisms to
detect overlapping community boundaries by learning node-community affiliation probabilities,
complementing ACO’s pheromone dynamics with neural interpretability.
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e Graph Generation for Scenario Projection: Train generative adversarial networks (GANS)
or diffusion models on temporal network snapshots to synthesize plausible future graph states,
enabling stress-testing of LFM2ACO under predicted social configurations.

¢ Embedding-Driven Scalability: Combine hyperbolic graph embeddings with LEM2ACO’s op-
timization process to reduce computational complexity in large-scale networks while preserving
hierarchical community structures.

e Multimodal Fusion for Event Prediction: Architect multimodal pipelines that jointly process
network topology (via GNNs), temporal activity sequences (via LSTMs), and user metadata to
forecast macro-level community events like mass migrations or influencer-driven splits.
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